541 research outputs found
Negativity as a distance from a separable state
The computable measure of the mixed-state entanglement, the negativity, is
shown to admit a clear geometrical interpretation, when applied to
Schmidt-correlated (SC) states: the negativity of a SC state equals a distance
of the state from a pertinent separable state. As a consequence, a SC state is
separable if and only if its negativity vanishes. Another remarkable
consequence is that the negativity of a SC can be estimated "at a glance" on
the density matrix. These results are generalized to mixtures of SC states,
which emerge in certain quantum-dynamical settings.Comment: 9 pages, 1 figur
Layout of Graphs with Bounded Tree-Width
A \emph{queue layout} of a graph consists of a total order of the vertices,
and a partition of the edges into \emph{queues}, such that no two edges in the
same queue are nested. The minimum number of queues in a queue layout of a
graph is its \emph{queue-number}. A \emph{three-dimensional (straight-line
grid) drawing} of a graph represents the vertices by points in
and the edges by non-crossing line-segments. This paper contributes three main
results:
(1) It is proved that the minimum volume of a certain type of
three-dimensional drawing of a graph is closely related to the queue-number
of . In particular, if is an -vertex member of a proper minor-closed
family of graphs (such as a planar graph), then has a drawing if and only if has O(1) queue-number.
(2) It is proved that queue-number is bounded by tree-width, thus resolving
an open problem due to Ganley and Heath (2001), and disproving a conjecture of
Pemmaraju (1992). This result provides renewed hope for the positive resolution
of a number of open problems in the theory of queue layouts.
(3) It is proved that graphs of bounded tree-width have three-dimensional
drawings with O(n) volume. This is the most general family of graphs known to
admit three-dimensional drawings with O(n) volume.
The proofs depend upon our results regarding \emph{track layouts} and
\emph{tree-partitions} of graphs, which may be of independent interest.Comment: This is a revised version of a journal paper submitted in October
2002. This paper incorporates the following conference papers: (1) Dujmovic',
Morin & Wood. Path-width and three-dimensional straight-line grid drawings of
graphs (GD'02), LNCS 2528:42-53, Springer, 2002. (2) Wood. Queue layouts,
tree-width, and three-dimensional graph drawing (FSTTCS'02), LNCS
2556:348--359, Springer, 2002. (3) Dujmovic' & Wood. Tree-partitions of
-trees with applications in graph layout (WG '03), LNCS 2880:205-217, 200
Irreducible Triangulations are Small
A triangulation of a surface is \emph{irreducible} if there is no edge whose
contraction produces another triangulation of the surface. We prove that every
irreducible triangulation of a surface with Euler genus has at most
vertices. The best previous bound was .Comment: v2: Referees' comments incorporate
Theory of commensurable magnetic structures in holmium
The tendency for the period of the helically ordered moments in holmium to
lock into values which are commensurable with the lattice is studied
theoretically as a function of temperature and magnetic field. The
commensurable effects are derived in the mean-field approximation from
numerical calculations of the free energy of various commensurable structures,
and the results are compared with the extensive experimental evidence collected
during the last ten years on the magnetic structures in holmium. In general the
stability of the different commensurable structures is found to be in accord
with the experiments, except for the tau=5/18 structure observed a few degrees
below T_N in a b-axis field. The trigonal coupling recently detected in holmium
is found to be the interaction required to explain the increased stability of
the tau=1/5 structure around 42 K, and of the tau=1/4 structure around 96 K,
when a field is applied along the c-axis.Comment: REVTEX, 31 pages, 7 postscript figure
Realizability of Polytopes as a Low Rank Matrix Completion Problem
This article gives necessary and sufficient conditions for a relation to be
the containment relation between the facets and vertices of a polytope. Also
given here, are a set of matrices parameterizing the linear moduli space and
another set parameterizing the projective moduli space of a combinatorial
polytope
On the Maximum Crossing Number
Research about crossings is typically about minimization. In this paper, we
consider \emph{maximizing} the number of crossings over all possible ways to
draw a given graph in the plane. Alpert et al. [Electron. J. Combin., 2009]
conjectured that any graph has a \emph{convex} straight-line drawing, e.g., a
drawing with vertices in convex position, that maximizes the number of edge
crossings. We disprove this conjecture by constructing a planar graph on twelve
vertices that allows a non-convex drawing with more crossings than any convex
one. Bald et al. [Proc. COCOON, 2016] showed that it is NP-hard to compute the
maximum number of crossings of a geometric graph and that the weighted
geometric case is NP-hard to approximate. We strengthen these results by
showing hardness of approximation even for the unweighted geometric case and
prove that the unweighted topological case is NP-hard.Comment: 16 pages, 5 figure
Two-sided combinatorial volume bounds for non-obtuse hyperbolic polyhedra
We give a method for computing upper and lower bounds for the volume of a
non-obtuse hyperbolic polyhedron in terms of the combinatorics of the
1-skeleton. We introduce an algorithm that detects the geometric decomposition
of good 3-orbifolds with planar singular locus and underlying manifold the
3-sphere. The volume bounds follow from techniques related to the proof of
Thurston's Orbifold Theorem, Schl\"afli's formula, and previous results of the
author giving volume bounds for right-angled hyperbolic polyhedra.Comment: 36 pages, 19 figure
Polytopality and Cartesian products of graphs
We study the question of polytopality of graphs: when is a given graph the
graph of a polytope? We first review the known necessary conditions for a graph
to be polytopal, and we provide several families of graphs which satisfy all
these conditions, but which nonetheless are not graphs of polytopes. Our main
contribution concerns the polytopality of Cartesian products of non-polytopal
graphs. On the one hand, we show that products of simple polytopes are the only
simple polytopes whose graph is a product. On the other hand, we provide a
general method to construct (non-simple) polytopal products whose factors are
not polytopal.Comment: 21 pages, 10 figure
Irreducible triangulations of surfaces with boundary
A triangulation of a surface is irreducible if no edge can be contracted to
produce a triangulation of the same surface. In this paper, we investigate
irreducible triangulations of surfaces with boundary. We prove that the number
of vertices of an irreducible triangulation of a (possibly non-orientable)
surface of genus g>=0 with b>=0 boundaries is O(g+b). So far, the result was
known only for surfaces without boundary (b=0). While our technique yields a
worse constant in the O(.) notation, the present proof is elementary, and
simpler than the previous ones in the case of surfaces without boundary
CP and related phenomena in the context of Stellar Evolution
We review the interaction in intermediate and high mass stars between their
evolution and magnetic and chemical properties. We describe the theory of
Ap-star `fossil' fields, before touching on the expected secular diffusive
processes which give rise to evolution of the field. We then present recent
results from a spectropolarimetric survey of Herbig Ae/Be stars, showing that
magnetic fields of the kind seen on the main-sequence already exist during the
pre-main sequence phase, in agreement with fossil field theory, and that the
origin of the slow rotation of Ap/Bp stars also lies early in the pre-main
sequence evolution; we also present results confirming a lack of stars with
fields below a few hundred gauss. We then seek which macroscopic motions
compete with atomic diffusion in determining the surface abundances of AmFm
stars. While turbulent transport and mass loss, in competition with atomic
diffusion, are both able to explain observed surface abundances, the interior
abundance distribution is different enough to potentially lead to a test using
asterosismology. Finally we review progress on the turbulence-driving and
mixing processes in stellar radiative zones.Comment: Proceedings of IAU GA in Rio, JD4 on Ap stars; 10 pages, 7 figure
- …