486 research outputs found

    Non-linear spin to charge conversion in mesoscopic structures

    Get PDF
    Motivated by recent experiments [Vera-Marun et al., arXiv:1109.5969], we formulate a non-linear theory of spin transport in quantum coherent conductors. We show how a mesoscopic constriction with energy-dependent transmission can convert a spin current injected by a spin accumulation into an electric signal, relying neither on magnetic nor exchange fields. When the transmission through the constriction is spin-independent, the spin-charge coupling is non-linear, with an electric signal that is quadratic in the accumulation. We estimate that gated mesoscopic constrictions have a sensitivity that allows to detect accumulations much smaller than a percent of the Fermi energy.Comment: 4 pages, 3 figure

    Fast Long-Distance Control of Spin Qubits by Photon Assisted Cotunneling

    Full text link
    We investigate theoretically the long-distance coupling and spin exchange in an array of quantum dot spin qubits in the presence of microwaves. We find that photon assisted cotunneling is boosted at resonances between photon and energies of virtually occupied excited states and show how to make it spin selective. We identify configurations that enable fast switching and spin echo sequences for efficient and non-local manipulation of spin qubits. We devise configurations in which the near-resonantly boosted cotunneling provides non-local coupling which, up to certain limit, does not diminish with distance between the manipulated dots before it decays weakly with inverse distance.Comment: 17 pages (including 8 pages of Appendices), 2 figure

    Theory of Spin Relaxation in Two-Electron Lateral Coupled Si/SiGe Quantum Dots

    Get PDF
    Highly accurate numerical results of phonon-induced two-electron spin relaxation in silicon double quantum dots are presented. The relaxation, enabled by spin-orbit coupling and the nuclei of 29^{29}Si (natural or purified abundance), are investigated for experimentally relevant parameters, the interdot coupling, the magnetic field magnitude and orientation, and the detuning. We calculate relaxation rates for zero and finite temperatures (100 mK), concluding that our findings for zero temperature remain qualitatively valid also for 100 mK. We confirm the same anisotropic switch of the axis of prolonged spin lifetime with varying detuning as recently predicted in GaAs. Conditions for possibly hyperfine-dominated relaxation are much more stringent in Si than in GaAs. For experimentally relevant regimes, the spin-orbit coupling, although weak, is the dominant contribution, yielding anisotropic relaxation rates of at least two order of magnitude lower than in GaAs.Comment: 11 pages, 10 figure

    Spin-orbit coupled particle in a spin bath

    Get PDF
    We consider a spin-orbit coupled particle confined in a quantum dot in a bath of impurity spins. We investigate the consequences of spin-orbit coupling on the interactions that the particle mediates in the spin bath. We show that in the presence of spin-orbit coupling, the impurity-impurity interactions are no longer spin-conserving. We quantify the degree of this symmetry breaking and show how it relates to the spin-orbit coupling strength. We identify several ways how the impurity ensemble can in this way relax its spin by coupling to phonons. A typical resulting relaxation rate for a self-assembled Mn-doped ZnTe quantum dot populated by a hole is 1 μ\mus. We also show that decoherence arising from nuclear spins in lateral quantum dots is still removable by a spin echo protocol, even if the confined electron is spin-orbit coupled.Comment: 18 pages, 1 figur

    Coexistence of qubit effects

    Get PDF
    Two quantum events, represented by positive operators (effects), are coexistent if they can occur as possible outcomes in a single measurement scheme. Equivalently, the corresponding effects are coexistent if and only if they are contained in the ranges of a single (joint) observable. Here we give several equivalent characterizations of coexistent pairs of qubit effects. We also establish the equivalence between our results and those obtained independently by other authors. Our approach makes explicit use of the Minkowski space geometry inherent in the four-dimensional real vector space of selfadjoint operators in a two-dimensional complex Hilbert space

    Quantum nondemolition measurement of an electron spin qubit

    Full text link
    Measurement of quantum systems inevitably involves disturbance in various forms. Within the limits imposed by quantum mechanics, however, one can design an "ideal" projective measurement that does not introduce a back action on the measured observable, known as a quantum nondemolition (QND) measurement. Here we demonstrate an all-electrical QND measurement of a single electron spin in a gate-defined quantum dot via an exchange-coupled ancilla qubit. The ancilla qubit, encoded in the singlet-triplet two-electron subspace, is entangled with the single spin and subsequently read out in a single shot projective measurement at a rate two orders of magnitude faster than the spin relaxation. The QND nature of the measurement protocol is evidenced by observing a monotonic increase of the readout fidelity over one hundred repetitive measurements against arbitrary input states. We extract information from the measurement record using the method of optimal inference, which is tolerant to the presence of the relaxation and dephasing. The QND measurement allows us to observe spontaneous spin flips (quantum jumps) in an isolated system with small disturbance. Combined with the high-fidelity control of spin qubits, these results pave the way for various measurement-based quantum state manipulations including quantum error correction protocols.Comment: This is a pre-print of an article published in Nature Nanotechnology. The final authenticated version is available online at: https://doi.org/10.1038/s41565-019-0426-

    Robust Single-Shot Spin Measurement with 99.5% Fidelity in a Quantum Dot Array

    Full text link
    We demonstrate a new method for projective single-shot measurement of two electron spin states (singlet versus triplet) in an array of gate-defined lateral quantum dots in GaAs. The measurement has very high fidelity and is robust with respect to electric and magnetic fluctuations in the environment. It exploits a long-lived metastable charge state, which increases both the contrast and the duration of the charge signal distinguishing the two measurement outcomes. This method allows us to evaluate the charge measurement error and the spin-to-charge conversion error separately. We specify conditions under which this method can be used, and project its general applicability to scalable quantum dot arrays in GaAs or silicon.Comment: 13 pages, 3 figure

    A fast quantum interface between different spin qubit encodings

    Full text link
    Single-spin qubits in semiconductor quantum dots proposed by Loss and DiVincenzo (LD qubits) hold promise for universal quantum computation with demonstrations of a high single-qubit gate fidelity above 99.9 % and two-qubit gates in conjunction with a long coherence time. However, initialization and readout of a qubit is orders of magnitude slower than control, which is detrimental for implementing measurement-based protocols such as error-correcting codes. In contrast, a singlet-triplet (ST) qubit, encoded in a two-spin subspace, has the virtue of fast readout with high fidelity and tunable coupling to the electric field. Here, we present a hybrid system which benefits from the different advantages of these two distinct spin-qubit implementations. A quantum interface between the two codes is realized by electrically tunable inter-qubit exchange coupling. We demonstrate a controlled-phase (CPHASE) gate that acts within 5.5 ns, much faster than the measured dephasing time of 211 ns. The presented hybrid architecture will be useful to settle remaining key problems with building scalable spin-based quantum computers
    corecore