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Spin-orbit coupled particle in a spin bath
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We consider a spin-orbit coupled particle confined in a quantum dot in a bath of impurity spins. We investigate
the consequences of spin-orbit coupling on the interactions that the particle mediates in the spin bath. We show
that in the presence of spin-orbit coupling, the impurity-impurity interactions are no longer spin conserving.
We quantify the degree of this symmetry breaking and show how it relates to the spin-orbit coupling strength.
We identify several ways how the impurity ensemble can in this way relax its spin by coupling to phonons. A
typical resulting relaxation rate for a self-assembled Mn-doped ZnTe quantum dot populated by a hole is 1 μs.
We also show that decoherence arising from nuclear spins in lateral quantum dots is still removable by a spin
echo protocol, even if the confined electron is spin-orbit coupled.
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I. INTRODUCTION

A singly occupied quantum dot is the state of the art of a
controllable quantum system in a semiconductor.1,2 Coherent
manipulation of the particle spin has been demonstrated in
lateral dots, where top gates allow for an astonishing degree of
control by electric fields3–6 and in self-assembled dots, where a
weaker control over the dot shape and position is compensated
by the speed of the optical manipulation.7 In both of these
major groups, there are two main spin-dependent interactions
of the confined particle and the semiconductor environment:
spin-orbit coupling embedded in the band structure, and spin
impurities, which are either nuclear spins or magnetic atoms.8,9

A particle couples to an impurity spin dominantly through
an exchange interaction, which conserves the total spin of
the pair.10 This way, the electron spin in a lateral GaAs dot
will decohere within 10 ns due to the presence of nuclei.11–17

Typically, such decoherence is considered a nuisance that can
be partially removed by spin echo techniques prolonging the
coherence to hundreds of microseconds.18–20 Whether that
decoherence time can be extended further, e.g., by polarizing
the impurities,21,22 is not clear, as the experimentally achieved
degree of polarization has been so far insufficient, despite
great efforts.23–25 On the other hand, a strong particle-impurity
interaction is desired in magnetically doped quantum dots.26–42

Here, the confined particle is central for both supporting
energetically, and assisting in creation, the desired magnetic
order of the impurity ensemble. In fact, similar magnetic
ordering can be traced to the studies of magnetic polarons
in bulk semiconductors, for over 50 years.43 The formation
of a magnetic polaron can be viewed as a cloud of localized
impurity spins, aligned through exchange interaction with a
confined carrier spin.44–47

The conservation of the spin by the impurity-particle inter-
action is a crucial property. For example, the spin relaxation of
the impurity ensemble is impossible with only spin-conserving
interactions at hand. This motivates us to consider possibilities
to break this symmetry. The first and obvious candidate is the
spin-orbit coupling (SOC).8,9 Despite being weak on the scale
of the particle orbital energies, it dominates the relaxation

of the particle spin in electronic dots, as is well known,48

because it is the dominant spin-nonconserving interaction.
An additional motivation to further consider the implications
of spin-orbit coupling comes from experiments in (II,Mn)VI
quantum wells. The spin-orbit coupling in these structures can
be responsible for an effective impurity-particle (Mn-hole)
interaction49,50 and lead to measured time scales ∼100 ps,51

characteristic also for the magnetic polaron formation ob-
served in (II,Mn)VI quantum dots.26,33,34

The questions we pose and answer in this work are as
follows: Assuming the particle is weakly spin-orbit coupled,
how strong are the effective spin-nonconserving interactions
which appear in the impurity ensemble and what is their form?
Is the induced particle decoherence still removable by spin
echo? Is the particle efficient in inducing impurity ensemble
spin relaxation, thereby limiting the achievable degree of the
dynamical nuclear spin polarization?52 Can the magnetic order
be created through the spin-nonconserving particle mediated
interactions, that is, is this a relevant magnetic polaron
formation channel?

To address these questions, we develop here a framework
allowing us to treat different particles and impurity spins in a
unified manner. We apply our method to two specific systems: a
lateral quantum dot in GaAs occupied by a conduction electron
with nuclear spins of constituent atoms as the spin impurities,
and a self-assembled ZnTe quantum dot occupied by a heavy
hole doped with Mn atoms as the spin impurities (readily
incorporated as Mn is isovalent with group-II atom Zn).
Both of these systems are quasi-two-dimensional, the particle
spin-orbit coupling is weak compared to the particle orbital
level spacing, and the particle-impurity interaction is weak
compared to the particle orbital and spin level spacings.2,34,53,54

As it is known,55 in this regime one can derive an effective
Hamiltonian for the impurity ensemble only, in which the
particle does not appear explicitly. This can be done including
the particle-bath interaction perturbatively in the lowest order
(see the scheme in Fig. 1). Our contribution is in showing how
the procedure generalizes to a spin-orbit coupled particle. In
addition, we use the resulting Hamiltonian for the calculation
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FIG. 1. (Color online) Effective interaction between impurities
(encircled in red/gray) mediated by a confined particle (red/gray
lines). (a) Electron is excited from the ground state of spin + 1

2 into
the closest spin- 1

2 state (up by the Zeeman energy �z) upon flipping
one of the impurities and deexcited back upon flipping another one.
(b) Hole spectrum comprises heavy-hole- (hh) and light-hole- (lh)
like states, the latter displaced by light-heavy–hole splitting �lh.

of the spin relaxation of the impurities which is phonon
assisted (required to dissipate energy) and particle mediated
(required to dissipate spin). We come up with (and evaluate
the corresponding rates for) five possible mechanisms as to
how the spin flips can proceed: shifts of the particle by the
phonon electric field (Sec. IV B), position shifts of the impurity
atoms (Sec. IV B), relative shifts of bulk bands (Sec. IV C),
renormalization of the spin-orbit interactions due to band
shifts (Sec. IV D), and spin-orbit interactions arising from the
phonon electric field (Sec. IV E).

Our main findings are the following: (i) The spin-
nonconserving interactions couplings are proportional to the
spin-conserving ones multiplied by some power of small
parameter(s) which quantify the spin-orbit interaction. For the
electron, the small parameter is the dot dimension divided by
the spin-orbit length and the proportionality is linear. For the
hole, the small parameters are the amplitudes of the light-hole
admixtures into the heavy-hole states. The proportionality
differs (from linear to quadratic) depending on which hole
excited state mediates the interaction. The interaction form is
given in Eq. (43), our main result. (ii) For the electron, the
additional decoherence is removed by the spin echo, while
for holes only a partial removal is possible. The latter is
because, unlike for electrons, the spin-nonconserving coupling
is mediated rather efficiently through higher excited states.
(iii) The piezoelectric acoustic phonons are most efficient in
relaxing the impurity spin. The resulting relaxation time is
unobservably long for nuclear spins, while the hole-induced
Mn spin relaxation time of 1 μs is typical for a 10-nm
self-assembled quantum dot, where experimentally measured
times for the polaron formation range from nanoseconds
to subnanoseconds.26,33,34 From this we conclude that the
interplay of spin-orbit coupling and phonons does not govern
the dynamics of magnetic polaron formation at moderate Mn
densities (few percent), but rather represents the spin-lattice
relaxation time scale, similarly as is the case in quantum
wells.43,56 The analytical formulas derived in this work allow
us to identify regimes (in addition to a very low Mn doping)
where the particle-mediated spin relaxation could be relevant
for the polaron formation: an example is a hole located at a

charged impurity. Furthermore, even when it is not the relevant
time scale for magnetic polaron formation, the spin-lattice
relaxation is an important quantity that determines the time
scale on which the magnetization can be switched. Experi-
mentally, time-resolved photoluminescence measurements of
pulsed photoexcited carriers allow for a direct extraction of
spin-lattice relaxation times in magnetic quantum dots.57 The
use of our analytical findings therefore can help elucidate other
trends in magnetization dynamics of quantum dots, not limited
to magnetic polaron formation.57,58

The paper is organized as follows: In Sec. II, we introduce
the description of the particle, focusing on the spin-orbit cou-
pling. In Sec. III, we specify the particle-impurity interaction,
define its important characteristics, and derive the effective
Hamiltonian for the impurity ensemble. In Sec. IV, we
calculate the spin relaxation rates for the impurity ensemble,
after which we conclude and provide possible future directions
including multiparticle effects. We put numerous technical
details into the Appendices, with which the text is self-
contained.

II. QUANTUM DOT STATES AND
SPIN-ORBIT INTERACTION

A. Electron states

In the single-band effective mass approximation, that we
adopt, the Hamiltonian of a quantum dot electron is

Hdot = p2

2m
+ V (r) + p2

z

2m
+ Vz(z) + gμBB · J + HSO. (1)

The underlying band structure is taken into account as a
renormalization of the mass m and the g factor in the electron
kinetic and Zeeman energies, respectively. The latter couples
the external magnetic field B, applied along a unit vector s0, to
the electron spin through the vector of Pauli matrices σ = 2J.
Following, we assume a sizable (above 100 mT) external
magnetic field in the electronic case, typically employed in
experiments for the electron spin measurement48,59 and to slow
down the impurity dynamics and the resulting decoherence.16

We neglect the orbital effects of this field, which is justified
if the confinement length is much smaller than the magnetic
length lB = √

2h̄/eB, where −e is the electron charge. If the
field is strong (above 1–2 T), the orbital effects important here
are fully incorporated by a renormalization of the confinement
length l−4 → l−4 + l−4

B .
The quantum dot is defined by the confinement potential

V + Vz, which we separated into the in-plane and perpendicu-
lar contributions. The corresponding in-plane and perpendicu-
lar position and momentum components read as R = {r,z} and
P = {p,pz}, respectively. Whenever we need an explicit form
of the wave function, we assume, for convenience, a parabolic
in-plane and a hard-wall perpendicular confinement:

V (r) = h̄2

2ml4
r2 ≡ 1

2
mω2r2, (2a)

Vz(z) =
{

0, 0 < z < w

∞, otherwise. (2b)

The confinement lengths l and w characterize a typical extent
of the wave function in the lateral and perpendicular directions,

165303-2



SPIN-ORBIT COUPLED PARTICLE IN A SPIN BATH PHYSICAL REVIEW B 87, 165303 (2013)

respectively. The confinement energy h̄ω is a parameter
alternative to l. We stress that our results do not rely on
the specific confinement form in any way, as long as the dot
is quasi-two-dimensional, a condition which for the adopted
example reads as l � w. Typical values for lateral quantum
dots in GaAs are l = 30 nm and w = 8 nm.

The last term in Eq. (1) is the spin-orbit interaction8

HSO = h̄

2mld
(−σxpx + σypy) + h̄

2mlbr
(σxpy − σypx), (3)

comprising the Dresselhaus term, which arises in zinc-blende
structures grown along the [001] axis and the Bychkov-Rashba
term, which is a consequence of the strong perpendicular
confinement. The interactions are parametrized by the spin-
orbit lengths lSO ∈ {ld,lbr}, typically a few microns in GaAs
heterostructures.

Assume first that the spin-orbit coupling is absent. To be
able to treat the electron and the hole (each referred to as
the particle) on the same footing, we introduce the following
notation:

|�p〉 = |J 〉 ⊗ ∣∣�J
a

〉
(zero SOC). (4)

The complete particle wave function, for which we use the
Greek letter �, is a two- (electron) or four- (hole) component
spatially dependent spinor. Its label p = {J,a} indicates that
the wave function is separable into a (position-independent)
spinor |J 〉 and a scalar position-dependent complex amplitude
|�〉. The former is labeled by the particle angular momentum in
units of h̄, J = ± 1

2 (electron), J = ± 3
2 ,± 1

2 (hole; alternatively,
we use hh for 3

2 and lh for 1
2 labels). The set of orbital quantum

numbers a depends on the confinement potential. For the
choice in Eqs. (2), it is a set of three numbers a = {nm,k},
with n the main and m the orbital quantum number (m ≡ −m)
of a Fock-Darwin state, and k the label of the subband in the
perpendicular hard-wall confinement. Finally, for the particle
ground state, we omit the index a, or use G ≡ {J,00,0} in
place of p. The electron ground state is thus denoted by

|�1/2〉 = |1/2〉 ⊗ |�G〉, (5)

where the direction of the spin-up spinor |1/2〉 is set by the
external field along s0.

Let us now consider the spin-orbit coupling. It turns out
that for electrons the spin-orbit effects on the wave function
can be in the leading order written as60,61

|�p〉 = U |J 〉 ⊗ ∣∣�J
a

〉
. (6)

Here, U is a unitary 2 × 2 matrix of a spinor rotation

U (r) = exp[−i nSO(r) · J], (7)

parametrized by an in-plane position-dependent vector

nSO(r) = −
(

x

ld
− y

lbr
,
x

lbr
− y

ld
,0

)
. (8)

A weak spin-orbit coupling allows us to label states with
the same quantum numbers as for no spin-orbit case, as
there is a clear one-to-one correspondence. The enormous
simplification, that the unitary matrix in Eq. (6) does not
depend on the quantum numbers p, is due to the special form of
the spin-orbit coupling in Eq. (3), which has several interesting

consequences.62–65 To calculate the spin relaxation or spin-
orbit-induced energy shifts, on which U has no effects, one has
to go beyond the leading order given in Eq. (6).66 However,
we will see that here U will result in spin-nonconserving
interactions, and it is thus enough to consider the leading
order. For the same reason, we neglected the cubic Dresselhaus
term in Eq. (3), which is here, unlike usually,67 an excellent
approximation.

B. Hole states

For holes, we restrict to the four-dimensional subspace of
the light- and heavy-hole subbands. Neglecting the spin-orbit
coupling, they correspond to the angular momentum states
J = ± 3

2 , and ± 1
2 , respectively. We use the confinement

potential in Eqs. (2), setting the confinement energy in the
heavy-hole subband to 20 meV, which gives l ≈ 4 nm and
the light-heavy–hole splitting to �lh = 100 meV, which gives
w ≈ 2 nm. The atomic spin-orbit coupling manifests itself
as the orbital splitting of the light and heavy holes from
the spin-orbit split-off band (which is energetically far from
the states considered in this paper), and as a coupling of the
light and heavy holes at finite momenta. The latter effect we
refer to as the hole spin-orbit coupling. As the nomenclature
concerning this coupling varies in literature, we stress that
for holes, we do not consider higher-order effects, which
give rise to spin-orbit interactions similar in form to the
electronic Dresselhaus and Rashba terms given in Eq. (3): such
higher-order terms admixing heavy-hole states do not induce
additional interactions within the impurity ensemble, whereas,
as we show in Appendix F, the electric field (interface) induced
spin-orbit coupling leads to effects analogous but smaller than
those we consider. Within this model, we derive the spin-orbit
coupled wave functions from the corresponding 4 × 4 sector
of the Kohn-Luttinger Hamiltonian in Appendix A, and get the
hole ground state as

|�3/2〉 = |3/2〉 ⊗ ∣∣�hh
00,0

〉 + λ1|1/2〉 ⊗ ∣∣�lh
01,1

〉
+ λ0|−1/2〉 ⊗ ∣∣�lh

02,0

〉
. (9)

We used the notation explained below Eq. (4). The Fock-
Darwin states in the heavy-hole (hh) and light-hole (lh)
subbands differ, due to different effective masses. The key
quantities are the scalars λ, which quantify the light-heavy–
hole mixing. The spin-nonconserving interactions, as well
as the resulting spin relaxation rates, will scale with these
scalars. For our parameters, which we list for convenience
in Appendix E, we get λ0 ≈ λ1 ≈ 0.05. In addition to the
ground state, we will need also the lowest excited state in
the heavy-hole subband, which is the time-reversed copy of
Eq. (9):

|�−3/2〉 = |−3/2〉 ⊗ ∣∣�hh
00,0

〉 − λ1|−1/2〉 ⊗ ∣∣�lh
01,1

〉
+ λ0|1/2〉 ⊗ ∣∣�lh

02,0

〉
, (10)

and also the lowest state in the light-hole subband

|�1/2〉 = |1/2〉 ⊗ ∣∣�lh
00,0

〉 + λ′
1|3/2〉 ⊗ ∣∣�hh

01,1

〉
− λ′

0|−3/2〉 ⊗ ∣∣�lh
02,0

〉
, (11)
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which is surprisingly effective in inducing the spin-
nonconserving coupling among impurities, as we will see. We
make a few notes here: First, in the spherical approximation
that we adopt, the Kohn-Luttinger Hamiltonian conserves
the angular momentum, so that all components in each of
Eqs. (9)–(11) have the same value of J + m. Second, the
mixing is stronger in the light-hole subband λ′

1 ≈ 0.15 and
λ′

0 ≈ 0.11. This is because the admixing states are closer
in energy: the Fock-Darwin excitation energies add to and
subtract from the light-heavy–hole splittings in the heavy-
and light-hole cases, respectively, as evidenced by Eqs. (A9)
and (A11). Third, we will be interested in the case of zero exter-
nal magnetic field for holes. Unlike for electrons, such a field
is here not required to split the two states in Eqs. (9) and (10),
as the splitting arises due to the spin impurities. As we will
see, this splitting will be of the order of few meV. Compared to
this, the hole Zeeman energy is negligible up to fields of several
Tesla. In addition, the external field suppresses an interesting
feedback between the particle and impurities.68 Finally, we
note that one could relate the first-order and unperturbed hole
states analogously to the electron case, introducing a unitary
transformation U , whose matrix elements are the coefficients
appearing in Eqs. (9)–(11). However, since here the transfor-
mation does not have any appealing form similar to the one in
Eq. (7), we do not explicitly construct the matrix U for holes.

III. EFFECTIVE HAMILTONIAN

In this section, we introduce the particle-impurity exchange
interaction, in a unified description for both electrons and
holes. The interaction manifests itself as the Knight field
acting on the impurities and the Overhauser field acting on the
particle. (The fields are defined as the exchange-interaction
expectation value in the corresponding subsystem state.)
Historically, the terminology was initially applied to nuclei
and here we also use it for Mn spins. With the help of
these fields, we define the unperturbed basis of the particle-
impurity system, for which we derive the effective interaction
Hamiltonian treating the nondiagonal exchange terms per-
turbatively. Finally, we define the spin-conserving versus
spin-nonconserving interaction terms and analyze their relative
strength.

Our strategy can be viewed also in the following alternative
way. To derive the spin-orbit coupling effects on the effective
impurity interactions, we proceed in two steps: First, we
unitarily transform the particle basis to remove the spin-orbit
coupling in the lowest order. The spin-orbit coupled basis
transformation renormalizes the particle-impurity exchange
interaction and breaks its spin-rotational symmetry. Then, we
integrate out the particle degrees of freedom by a second
unitary transformation, using the Löwdin (equivalently here,
the Schrieffer-Wolff) transformation, which leaves us with
effective interactions concerning impurities only.

A. Particle-impurity interaction

The particle interacts with impurities by the Fermi contact
interaction52,69

HF =
∑

n

Hn
F = −

∑
n

β δ(R − Rn) J · In. (12)

Here, n = 1,2 . . . labels the impurities located at positions
Rn = (rn,zn) with corresponding spin operators In in units of
h̄. The impurities have spin I and density 1/v0. For impurities
with different magnetic moments (as for nuclei of different
elements), the coupling β should have the index n, but we will
not consider this minor complication. Even though the particle
wave function formally extends to infinity, one can define
the number of impurities with which the particle interacts
appreciably as N = V/v0, with the dot volume V given by13

1/V =
∫

d3R |�G(R)|4. (13)

The maximal value of the Hamiltonian HF , if all impurities
are aligned with the particle, is

E = −
∑

n

β |�G(Rn)|2JI = −βJI/v0. (14)

The impurity Zeeman energy is

HnZ =
∑

n

gnμimpIn · B, (15)

with gn the impurity g factor. For GaAs lateral dots, we
consider nuclear spins as impurities, with I = 3

2 and μimp the
nuclear magneton μN , and 1/v0 is the GaAs atomic density.
For ZnTe dots, the impurities are intentionally doped Mn
atoms, with I = 5

2 and μimp the Bohr magneton μB , and the
impurity density is parametrized by xMn, the fraction of cations
replaced by Mn atoms, typically xMn = 1%.

B. Knight field

Assume the particle sits in the ground state G. In the lowest
order of the the particle-impurity interaction, a particular
impurity spin couples to a local field, called the Knight field.
We define it in units of energy by writing

Kn · In ≡ 〈�G|Hn
F |�G〉, (16)

from which, using Eq. (12), we get

Kn = −β〈�G|δ(R − Rn) J |�G〉. (17)

Using Eq. (6), the Knight field of an electron is

Kn = −β|�G(Rn)|2〈1/2|U †(Rn) J U (Rn)|1/2〉
= −β(1/2)|�G(Rn)|2〈s(Rn)〉. (18)

It points along the direction of the electron spin at the
position of the nth impurity, introduced as a unit vector
〈s(Rn)〉 ≡ RU (Rn)[s0]. The operator RU is defined such that
it performs the same rotation on vectors, as U does on
spinors. The explicit form of R is the one in Eq. (7), if
generators of rotations in three dimensions are used, (Jk)lm =
−i εklm. As is apparent from Eq. (18), evaluating the Knight
field with perturbed electron wave functions is equivalent to
evaluating a unitarily transformed interaction HF → U †HF U

with unperturbed electron wave functions.
We get the Knight field of the hole as (see Appendix B)[
Kn

x ,Kn
y ,Kn

z

] = −β
[
λ1Re fn, λ1Im fn,3

∣∣�hh
00,0(Rn)

∣∣2/
2
]
,

(19)

where we abbreviated fn = √
3 �lh

01,1(Rn)�hh∗
00,0(Rn) and ne-

glected contributions of higher orders in λ. Rather than the
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exact form, we note that without the spin-orbit coupling, the
direction of the Knight field is fixed globally (along the external
magnetic field for electrons, s0 = B/B and along the z axis, the
spin direction of heavy holes, for holes s0 = ẑ). The spin-orbit
interaction deflects the Knight field in a position-dependent
way, the deflection being in the leading order linear in the
small parameter characterizing the spin-orbit interaction. In
this respect, Eqs. (18) and (19) are the same.

C. Basis

The total field aligning the impurity spin is the sum of the
Knight field and the external field

Bn = Kn + gnμimpB. (20)

The typical energy scale of the Knight field of an electron in
a lateral dot is tens of peV, which corresponds to the impurity
in an external field of 1 mT. For a hole in a self-assembled
dot, the Knight field is of the order of 100 μeV, corresponding
to the external field of 0.3 T. Based on this, in the following
analysis we mostly consider typical situations, in which the
total field is dominated by the external field for nuclear spins
(electronic case) and the Knight field for Mn spins (hole case).

We now introduce for each impurity a rotated (primed)
coordinate system, in which the unit vector ẑ′ is along the total
field Bn. Formally, the rotation is performed by operator RBn

defined by the relation between the unit vectors

ẑ′ = RBn[ŝ0]. (21)

The orientation of the in-plane axes x ′, y ′ in the plane
perpendicular to ẑ′ is arbitrary, and we denote r′± = x̂′ ± iŷ′.
We define the impurity ensemble basis states as tensor products
of states with a definite spin projection along the locally rotated
axis z′:

|I〉 = ∣∣I 1
z′
〉 ⊗ ∣∣I 2

z′
〉 ⊗ · · · ⊗ ∣∣IN

z′
〉
. (22)

The spin projections take discrete values I n
z′ ∈ {I,I −

1, . . . ,−I }. We use I as the collective index of the impurities.
With this, we are now ready to introduce the complete system
basis, as spanning the states

|�p〉 ⊗ |I〉 ≡ |�p〉 ⊗ ∣∣I 1
z′
〉 ⊗ ∣∣I 2

z′
〉 ⊗ · · · ⊗ ∣∣IN

z′
〉
, (23)

with the corresponding energies

Ep,I = Ep +
∑

n

EIn
z′ = Ep +

∑
n

BnI n
z′ (24)

comprising the particle energy and the Zeeman energies of
impurities in the corresponding total fields.

D. The substantial gap assumption: Overhauser field

In addition to the Knight field, another consequence of the
particle-impurity interaction from Eq. (12) is the effective field
experienced by the particle spin, known as the Overhauser
field2 O. To express it in the energy units, it is helpful

to consider the matrix elements of the particle-impurity
interaction within the subspace of the lowest two electron
states J,J ′ ∈ S ≡ { 1

2 ,− 1
2 }:

〈�J | − β
∑

n

δ(R − Rn) J · In|�J ′ 〉

= −β
∑

n

|�G(Rn)|2R
U

†
n
[In] · 〈J |J|J ′〉. (25)

We introduce the field O as

HF |S ≡ O · J, (26)

where the subscript S refers to the subspace comprising a
pair of time-reversed particle states and the Overhauser field
depends on the choice of S. To quantify the Overhauser field,
we give up on trying to track the microscopic state of the
impurities and instead introduce the averaging (denoted by an
overline) over impurity ensembles

I n
a = 0, I n

a Im
b = δnmδabI (I + 1)/3, (27)

which characterize unpolarized and isotropic ensembles.
Nuclear spins, unless intentionally polarized in dynamical
nuclear polarization schemes,22,70,71 are usually well described
by Eq. (27). The same holds for Mn spins initially, before the
particle enters the dot and the polarization starts to build up.

Equation (27) gives a zero Overhauser field on average,
but with a finite dispersion, quantifying a typical value. For
electrons, we get the well-known result13,72

O2 = β2
∑
nm

|�G(Rn)|2|�G(Rm)|2R
U

†
n
[In] · R

U
†
m
[Im]

= β2
∑

n

|�G(Rn)|4I (I + 1) = I (I + 1)(β/v0)2/N,

(28)

stating that the typical value of the Overhauser field is inversely
proportional to the square root of the number of impurity
spins within the dot. The spin-orbit coupling, equivalent to
a position-dependent spin coordinate frame rotation, does
not influence the result at all, as Eq. (27) assumes isotropic
noninteracting impurities. For our parameters, the typical
Overhauser field value is 0.15 μeV, which corresponds to
external field of 10 mT. The energy splitting of the electron
spin opposite states is therefore for our case dominated by the
Zeeman, rather than the Overhauser, field.

For holes, we will not write the Overhauser field explicitly
as a vector. Instead, we calculate directly the typical matrix
elements of the particle-impurity interaction within the heavy-
hole subspace with the spin-orbit renormalized wave functions.
We leave details for Appendix B and state the results: the
diagonal terms are

|〈�±3/2|HF |�±3/2〉|2 ≈ (3/4)I (I + 1)(β/v0)2/N, (29)

where we neglected small contributions of the spin-orbit
coupling. An important difference to an analogous result for
the electrons [Eq. (28)] is the energy scale. Here, the typical
value for the diagonal Overhauser field is several meV, which
corresponds to huge external fields of many Tesla. The energy
splitting of the hole is thus dominated by the Overhauser, rather
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than Zeeman, field. On the other hand, the off-diagonal element
is nonzero only in the presence of the spin-orbit coupling

|〈�−3/2|HF |�3/2〉|2 ∼ 2I (I + 1)(λ0β/v0)2/N. (30)

The impurity spins may induce transition (precession) of
the heavy-hole spin due to the transversal component of the
Overhauser field, which is smaller by a factor of λ0 compared
to the diagonal component. For our parameters, the transversal
component is of the order of tens of μeV, so for the heavy-hole
spin precession to occur, the two spin opposite states have to be
degenerate with respect to this energy [which normally does
not occur because of the diagonal term (28)].

Having compared the typical energy splittings of the
particle induced by the effective Overhauser field, versus the
external magnetic field, we are now ready to discuss the crucial
assumption for the derivation which will follow. It is the
assumption that the particle is fixed to its ground state by
an energy gap, irrespective of the evolution of the impurity
ensemble. This requires that spin flips of impurities cost much
less in energy than the particle transitions

�EIn � �Ep. (31)

For electrons, this assumption is guaranteed as both the particle
and impurities spin-flip costs are dominated by the Zeeman
energy, proportional to the magnetic moment, which is much
larger for the electron than for a nuclear spin μimp = μN ∼
10−3μB . On the other hand, for holes for which the particle
and impurity magnetic moments are comparable, the above

condition is also fulfilled since the particle spin-flip energy
cost is dominated by the Overhauser field.

E. Effective Hamiltonian

Once the particle is fixed to its ground state (the substantial
gap assumption), the particle excited states can be integrated
out perturbatively55,73,74 resulting in an effective Hamiltonian
for the impurity ensemble Heff . For this purpose, we split the
interaction Hamiltonian to

HF ≡ H 0
F + H ′

F , (32)

where the diagonal part

H 0
F = 〈�G|HF |�G〉 =

∑
n

Kn · In, (33)

together with the external field, defines the unperturbed
Hamiltonian H0 = Hp + HnZ + H 0

F and the basis, so that

〈�p ⊗ IA|HnZ + H 0
F |�q ⊗ IB〉 ∝ δpqδAB, (34)

where IA, IB denote arbitrary basis states of the impurity
ensemble. We also note that

〈�G ⊗ IA|H ′
F |�G ⊗ IB〉 = 0. (35)

Using Löwdin theory,75,76 the matrix elements of the effective
Hamiltonian, in the lowest order in the nondiagonal part H ′

F ,
are

〈IA|Heff|IB〉 = 〈�G ⊗ IA| H0 +
∑

p �=G,I∗

(
1/2

EGIA
− EpI∗

+ 1/2

EGIB
− EpI∗

)
H ′

F |�p ⊗ I∗〉〈�p ⊗ I∗|H ′
F |�G ⊗ IB〉, (36)

where the summation proceeds through the excited particle
states and a complete basis of impurities. The substantial gap
assumption assures that all states reachable by H ′

F have the
energy dominated by the particle, so that we can put EGI −
EpI∗ ≈ EG − Ep. The summation over the impurities then
gives an identity

〈IA|Heff|IB〉
= 〈�G ⊗ IA|H0 + H ′

F

∑
p �=G

|�p〉〈�p|
EG − Ep

H ′
F |�G ⊗ IB〉.

(37)

Since the impurity states now only sandwich both sides of the
equation, we can equate the operators

Heff = 〈�G|H0|�G〉 +
∑
p �=G

〈�G|H ′
F |�p〉〈�p|H ′

F |�G〉
EG − Ep

.

(38)

Even though this looks like the standard second-order pertur-
bation theory result, note that even after taking matrix elements
with respect to the particle states, the expressions still contain
the quantum mechanical operators of the impurity spins. On

the other hand, by taking the expectation value, the particle
degrees of freedom disappear from the effective Hamiltonian.
The first term is a sum of the particle ground-state energy and
the impurities energy in the Knight field

〈�G|H0|�G〉 = EG +
∑

n

Bn · In. (39)

To simplify the notation of the second term in Eq. (38), we
introduce

〈�G|H ′
F |�p〉 = 〈�G|HF |�p〉 ≡

∑
n

An · In, (40)

so that the p-state-dependent complex vector A is

An = −β〈�G|δ(R − Rn) J|�p〉. (41)

We now transform vectors A and spin operators I into the
coordinate system along the total field of each impurity

Ãn = R−1
Bn [An], Ĩn = R−1

Bn [In]. (42)

The z component of a rotated vector is its projection along the
direction of the local total field, e.g., Ĩz = I · ẑ′ and similarly
for A. Omitting the constant EG, we rewrite Eq. (38) with the
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new notation and arrive at our main result [see Eq. (D1) for its
component form]

Heff =
∑

n

BnĨ n
z +

∑
p �=G

∑
n,m

1

EG − Ep

(Ãn · Ĩn)(Ãm · Ĩm)†.

(43)

The first term defines the spin-flip energy cost and the spin
quantization axis given in Eq. (21). The interactions described
by the second term can be classified as spin conserving (spin
nonconserving) according to rotated operator Ĩ components
parallel (perpendicular) to a global axis ŝ0, as we will show
in the following. To further demonstrate the usefulness and
generality of Eq. (43), we show that known results follow
as special limits, and how the consequences of the spin-orbit
coupling on the impurities interactions can be drawn from the
formula. We also note that the derivation would proceed in the
same way even if G were not the particle ground state. The only
requirement for the validity of Eq. (43) is that the state G is far
enough in energy from other particle states so that Eq. (31) is
valid. For example, thermal excitations of the particle would
result in a thermal average of the effective Hamiltonian (the
vectors A and energies B do depend on G). We do not pursue a
finite-temperature regime further here, and assume the thermal
energy kBT is small such that the particle stays in the ground
state.

Before we evaluate vectors Ã in specific cases, we note an
important property of the effective Hamiltonian. Namely, for
both holes and electrons, the lowest excited state is much closer
to the ground state (split by the Zeeman energy) compared to
higher excited states (split by orbital excitation energies). If the
mediated interactions are dominated by this low-lying excited
state, we have

Heff =
∑

n

BnĨ n
z +

∑
n,m

1

EG − Ep

(
Ãn

Gp · Ĩn
)(

Ãm
Gp · Ĩm

)†
,

(44)

where we made explicit the dependence of vectors A on the
ground and excited states using them as indexes. We note that
App′ = A

†
T (p)T (p′), up to a phase (which cancels in the Heff

because of the Hermitian conjugated term), where T (p) is
the state index of a time reversal of state p. Choosing p =
T (G) with G, first, spin-up, and second, spin-down state, we
get that the effective Hamiltonians for the two choices differ
only by the sign in the second term in Eq. (44). This crucial
property, which results in the particle spin decoherence being
to a large extent removable by the spin echo protocols,15,16 is
thus preserved in the presence of the spin-orbit coupling: It
follows as a general result whenever the spin opposite particle
state is the virtual state most effective in mediating the impurity
interactions.

F. Effective Hamiltonian symmetry and magnitude
of the spin-nonconserving interactions

For electrons, we get from Eq. (18)

Ãn = R−1
Bn [An] = εn

p R−1
Bn ◦ RUn

[〈JG| J |Jp〉], (45)

where we denoted the position-dependent energy

εn
p = −β�∗

G(Rn)�p(Rn) ∼ −β/V. (46)

Consider first that the magnetic field is small such that the total
effective field in Eq. (20) is dominated by the Knight field. The
local impurity quantization axis is then collinear with the local
particle spin direction RBn = RUn

, and Eqs. (43) and (45) give

Heff =
∑

n

BnĨ n
z +

∑
p∈↑

∑
n,m

εn
Gεm

p

EG − Ep

Ĩn
z Ĩm

z

+
∑
p∈↓

∑
n,m

εn
Gεm

p

EG − Ep

(Ĩn
−Ĩm

+ + Ĩm
−Ĩn

+)/2. (47)

We have split the summation over the particle excited states
into those with the same and the opposite spin as is the spin
of the ground state, corresponding to the second and the third
terms in Eq. (47), respectively. Equation (47) makes it clear
that there is a conserved quantity even in the presence of
spin-orbit coupling, although it is neither the energy nor the
total spin along any axis; it is the number of impurity spins
locally aligned with the particle spin, equal to

∑
n Ĩ n

z . This
result is very general, as it is based only on the form of the
spin-orbit coupling, which gives a single unitary operator U for
the whole particle spectrum. Restricting to the lowest excited
state, as in Eq. (44), we get the standard result73,74

Heff =
∑

n

BnĨ n
z −

∑
n,m

εn
Gεm

G

Ez

(Ĩn
−Ĩm

+ + Ĩm
−Ĩn

+)/2, (48)

generalized to include the spin-orbit coupling effects. Without
spin-orbit coupling, this result was first obtained in Ref. 73
and provided an important insight into the impurity-induced
decoherence and its removal by spin echo, discussed below
Eq. (44).

For the electronic case, we are, however, more interested
in a different regime, where a finite magnetic field breaks the
above-discussed symmetry and sets a global quantization axis
for impurities, so that the Zeeman energy dominates in the total
effective field in Eq. (20). We then have RBn ≈ 1 and Ĩ ≈ I.
Equation (45) can be then evaluated explicitly, using Eq. (7).
Instead, we estimate the effects of weak spin-orbit coupling,
which guarantees that Rm � lSO, by expanding the rotation
operator up to the first order as

U (Rm) ≈ 1 + O(rm/lSO), (49)

Ĩ n
+Ĩ m

− + γ Ĩ n
+Ĩ m

+ + γ ′Ĩ n
+Ĩ m

z + · · · , (50)

where γ,γ ′ = O[l/ lSO]. This is the most important message
for the electron case, that the spin-orbit coupling results in
the spin-nonconserving interactions in the impurity ensemble,
which are, compared to the spin-conserving ones, suppressed
by a position-dependent factor of the order of the ratio of the
confinement and spin-orbit lengths.

We now turn attention to a hole dot, taking the lowest state
in the heavy-hole subband as the ground state G = 3

2 ,00,0.
The closest excited state, which gave by far the dominant
contribution in the electronic case, is the spin opposite heavy-
hole state p = − 3

2 ,00,0. The corresponding vectors A scale
as (see Appendix D for full expressions)

Ãn
+ ∼ εn

pO
(
λ2

0

)
, Ãn

− ∼ εn
pλ0, Ãn

z ∼ εn
pλ0. (51)

To quantify the prefactor in the second-order term Ãn
+, we

would have to go to the next order in the perturbation expansion
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of the wave functions. However, this is not necessary as this
term does not enter anywhere in the subsequent discussion.
We conclude from Eq. (51) that the spin-conserving inter-
actions mediated by the lowest heavy-hole excited state are
proportional to the second power of parameters λ (through
terms such as Ã−Ã∗

−Ĩ+Ĩ−), the same as the spin-nonconserving
ones (e.g., Ã−Ã∗

z Ĩ+Ĩz). This is a drastic difference to
the electron case, where the spin-conserving interactions
dominate.

Let us now consider the light-hole subband. Taking p = 1
2 ,

00,0, we get (see Appendix D)

Ãn
+ ∼ εn

p, Ãn
− ∼ εn

pλ0, Ãn
z ∼ εn

pλ′
1. (52)

The light-hole excited state does mediate spin-conserving
impurity interactions (through Ã+Ã∗

+Ĩ−Ĩ+). Compared to
these, the leading spin-nonconserving term (Ã+Ã∗

z Ĩ−Ĩz) is sup-
pressed linearly in λ. The energy denominator in the effective
Hamiltonian is of the order of 100 meV for the light-hole states
(typical light-heavy–hole band offset) versus a few meV offset
of the lowest heavy-hole excited state. For our parameters,
this energy penalty is almost exactly compensated by much
larger matrix elements for the spin-nonconserving interactions
and more than compensated for the spin-conserving ones.
We conclude that the light-hole ground state is the most
efficient mediator of the spin-conserving interactions in the
impurity ensemble, and a rather efficient mediator of the
spin-nonconserving ones. As a direct consequence, and unlike
for electrons, the decoherence induced by the hole-mediated
evolution of the impurity bath will not be removed by the hole
spin echo. This follows from Eq. (44) choosing G = 3

2 and
p = 1

2 on one hand and G = − 3
2 = T ( 3

2 ) and p = − 1
2 = T ( 1

2 )
on the other. Since E3/2 − E1/2 ≈ E−3/2 − E−1/2, we get that
the impurity interactions are independent (within this single
excited state approximation) on the hole spin state.

IV. PHONON-INDUCED SPIN RELAXATION
OF THE IMPURITY BATH

We now use the results of the previous section to calculate
how fast the impurity ensemble spin relaxes. The first and
the second terms of the effective Hamiltonian (43) induce flip
of a single impurity and a pair of impurities, respectively.
For the former, terms with in-plane components of Ĩ, while
for the latter terms such as the last two terms in Eq. (50),
are required for spin-nonconserving transitions. As the initial-
and final-state energies differ, in general, we consider that the
transition is assisted by phonons, which provide for the energy
conservation.

We consider several possible mechanisms as to how
phonons can couple to the impurity bath and make order of
magnitude estimates for the resulting relaxation rates. We find
that the most efficient relaxation is due to the piezoelectric
field spatially shifting the particle, leading to a μs relaxation
time for Mn spins. It is known that phonons are ineffective in
relaxing nuclear spins;77 still we evaluate the resulting rates
also for electrons because as we treated electrons and holes on
the same footing, the formulas derived below apply for both.
We find a 1011 s relaxation time for nuclear spins.

A. Particle-phonon interactions

The phonon-impurity interaction Hamiltonian Hi is in
general a function of the local lattice deformation arising in
the presence of acoustic phonons:

δR = i
∑
Qλ

√
h̄

2V0ρωQλ

eQλe
iQ·R(aQλ + a

†
−Qλ). (53)

Here, the phonon wave vector is Q, polarization is λ (one
longitudinal λ = l and two transversal ones λ = t1,2) with eQλ

a real unit vector (eQλ = −e−Qλ), V0 is the crystal volume, ρ is
the material density, h̄ωQλ = h̄cλQ is the phonon energy, cλ is
the phonon velocity, and a

†
Qλ is the phonon creation operator.

In a polar material, such as GaAs, the lattice deformation
is accompanied by a piezoelectric field, which is the gradient
of the following potential:

VPZ = −i 
∑
Qλ

√
2h̄

V0ρωQλ

1

Q2
eiQ·R(aQλ + a

†
−Qλ)

×[QxQy(eQλ)z + QzQx(eQλ)y + QyQz(eQλ)x], (54)

with  the piezoelectric constant.
The lattice deformation also shifts the electronic bands,

which is quantified by the deformation potential VDP =
−σ div δR. Equation (53) gives

VDP = σ
∑

Q

√
h̄

2V0ρωQl

Q eiQ·R(aQl + a
†
−Ql), (55)

with σ the deformation potential constant.
As we will see, a relative shift of the impurity and the

particle, which we denote by d, induces impurity-phonon cou-
pling, leading to the impurity-spin relaxation. Since impurities
are tied to atoms, the phonon displacement is obviously such a
relative shift d = δR, which we call “geometric.” However, the
phonon-induced electric fields E also lead to shifts. Namely,
adding the potential of an in-plane field to that in Eq. (2)
amounts to a shift of the quantum dot position by d = eEl2/h̄ω

(electrically induced shifts along the perpendicular direction
are much smaller, as the wave function is much stiffer along
z due to a stronger confinement). If the particle follows these
potential changes adiabatically, which we assume, such a shift
is equivalent to the shift of the impurities, fixed to the lattice,
by −d. Since the phonon electric fields are proportional to the
displacement δR, we can write a general expression

|d| ∼ α|δR|, (56)

with a dimensionless factor α. For the geometric shift
mechanism, α = 1 by definition. For the piezoelectric field,
comparing Eqs. (53) and (54), we get

α = 2Ql2/h̄ω. (57)

Finally, the deformation potential gives

α = σ (Ql)2/h̄ω. (58)

We evaluate α in Table I. As it enters the relaxation rates in
the second power (see below), we can immediately quantify
the relative importance of the three considered channels.
Piezoelectric field is the most effective, for both electron and
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TABLE I. Values for the dimensionless coefficient α, the ratio
of the induced impurity shift versus the phonon displacement for
various shift mechanisms (columns) and particles (rows). Parameters
from Appendix E were used (GaAs and ZnTe for the electron and
hole cases, respectively); the phonon wave vector for electronic case
was specified choosing B = 1 T.

α Piezoelectric Deformation Geometric

Electron 46 0.0038 1
Hole 38 17 1

hole cases, inducing shifts almost two orders of magnitude
larger than the geometric shift. The electric field from the
deformation potential is comparable to the piezoelectric for
holes, and much smaller for electrons, which are deeply in
the long phonon wavelength limit Ql � 1. We note that the
geometric shifts will be in fact somewhat more effective than
it seems from the table, as they may (unlike the electric fields)
shift the wave function along the perpendicular direction. Such
shifts can be described with an effective enhancement of α by a
factor of πl/w, which, however, is not large enough to change
the order of importance following from Table I.

We calculate the relaxation rate � due to a general phonon-
impurity interaction Hi by the Fermi’s golden rule. For a given
phonon polarization λ, it reads as

� = 2π

h̄

∑
Q

|〈I ′|Hi |I〉|2δ(EI − EI ′ − h̄ωQλ)NQ, (59)

where I and I ′ denote the initial and final states of the
impurities, and we are interested in transitions where these
two states differ in spin. The phonon occupation factor
NQ = nQ + 1, and NQ = nQ, if the energy of the initial state
is larger, and smaller than the final state, respectively, with
nQ = 1/[exp(h̄ωQλ/kBT ) − 1]. The energy conservation fixes
the phonon wave-vector magnitude to |EI − EI ′ | = h̄cλQ, by
which we get

� = V0Q
2

πh̄2cλ

NQ |〈I ′|Hi |I〉|2. (60)

The overline denotes the angular average

f (Q) = (1/4π )
∫

d�f (Q) (61)

over directions of the phonon wave vector Q.

B. Spin-phonon coupling due to impurity shift

Assuming the shifts are small, we get the impurity-phonon
coupling as

Hi = −
∑

n

d · ∂Heff

∂R

∣∣∣∣
R=Rn

. (62)

To calculate the spatial derivative of the effective Hamilto-
nian (43), it is easier to first evaluate the derivative of vectors
B and A in the original coordinate system which does not
depend on the position and then to transform them into the
locally rotated coordinates.

Take the first term of the effective Hamiltonian (43). The
finite derivative of the total field (20) is due to the spatial

dependence of the Knight field

(d · ∂R)Bn = (d · ∂R)Kn, (63)

transversal components of which give the spin-increasing
transition rate for impurity n as

�(1) = V0Q
2

πh̄2cλ

NQ[r′− · (d · ∂R)K]2|〈I n+1|Ĩ n
+|I n〉|2, (64)

and an analogous expression follows swapping the subscripts
± for a spin-decreasing transition. To get an order of magnitude
estimate for the rates as that in Eq. (64), we adopt the
following simplifications: We replace the matrix elements of
the raising/lowering operators by

|〈I n±1|Ĩ n
±|I n〉|2 = I (I + 1) − I n(I n ± 1) ∼ I 2, (65)

choose the direction of the phonon wave vector that gives the
highest contribution, instead of performing the angular average
in Eq. (61), and denote (δ equals l and w/π for an in-plane and
out-of-plane polarized phonon, respectively, see Appendix C)

∇K̃− ≡ δ−1 r′− · (d · ∂R)K. (66)

Finally, we use Eq. (56) and δR ∼ √
h̄/2V0ρcλQ to write

�(1) ∼ α2I 2NQQ

2πh̄c2
λρ

(∇K̃−)2, (67)

a general form for the relaxation rate estimate, which we
evaluate now for specific cases.

Let us start with the electronic case. The transition energy is
dominated by the external field h̄cλQ ≈ |gμNB| and is much
smaller than the thermal energy, so that NQ ≈ kBT /h̄cλQ.
We evaluate the derivative of the Knight field in Appendix C
[see Eq. (C6)], getting

∇K̃± ∼ (β/V )l−1
SO . (68)

For the dominant piezoelectric mechanism, we get

�(1) ∼ 9I 2

2π3

kBT (gμNB)2

h̄E2
PZ

l4

w2l2
SO

, (69)

where the energy EPZ =
√

h̄7c5
λρ/mβ is a material constant.

Evaluating parameters of GaAs, we get a minuscule rate �(1) ∼
2 × 10−11 s−1, choosing transversal phonons, external field
1 T, and temperature 1 K.

We now turn to holes. The transferred energy is now given
by the Knight field |EI − EI ′ | ∼ Jβ/V and we again consider
a high-temperature limit kBT � |EI − EI ′ |. As we show in
Appendix C, the result in Eq. (68) is changed into

∇K̃± ∼ (β/V )(
√

3λ1/l), (70)

showing that quantities of the form l/λ can be seen as effective
spin-orbit lengths for holes. Equation (69) can be then used
putting for the “spin-orbit length” the one just described and
replacing the external Zeeman energy by the Knight field. For
convenience, we give the relaxation rate explicitly

�(1) ∼ 35I 2J 2

25π4

kBT

h̄

β2

E2
PZ

λ2
1

w4l2
, (71)

which for ZnTe parameters and temperature 10 K yields
a modest rate 0.35 μs−1. The rate is second order in the
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“spin-orbit strength” and, unlike for electrons, grows fast upon
making the dot smaller since now the effect of Knight field,
inversely proportional to the dot volume, dominates over the
effect of the shift being larger for softer dot potential.

We now turn to the second part of the effective Hamilto-
nian (43). Phonon-induced fluctuations of this part enable a
simultaneous change of spin of two impurities. Comparing the
two terms of the effective Hamiltonian, and using the results
of Appendix D, the pairwise spin transition mediated by the
lowest heavy-hole excited state relates to the single spin-flip
rate by

N�
(2)
p=3/2

/
�(1) ∼ NI 2

(
2
λ2

0

λ1

β/V

E↓ − E↑

)2

, (72)

which evaluates to 10−2. Similarly, we get for the mediation
through the light-hole state

N�
(2)
p=1/2

/
�(1) ∼ N

(
3λ′

1

4λ1

β/V

�lh

)2

, (73)

where a much larger energy offset �lh is partially compensated
by a larger matrix element. The spin relaxation rate of the
impurity ensemble scales as �(1) and N�(2) for the single and
pairwise flip channels, respectively, because the number of
pairs available for a flip is of order N2. This is why we inserted
the factor N in the previous two equations. This fact also
suggests a possible experimental discrimination for the two
channels through their dependence on the impurity density.
The ensemble relaxation through single (pairwise) flips is
insensitive (linearly proportional) to the impurity density.

For completeness, we note that for electrons a similar
relation between the first- and second-order rates holds,

�(2) ∼ �(1)

(
β/V

E↓ − E↑

)2

I 2 � �(1), (74)

but the ratio is much smaller, at the external field of 1 T by 10
orders of magnitude.

We now consider additional mechanisms of the phonon-
impurity couplings, through which impurity-spin relaxation
may arise.

C. Valence band shifts

The phonon-induced lattice compression changes the band
structure: the bands are shifted. Shifts different for the bands
of the particle ground and mediating excited states p result
in the impurity-phonon coupling through the second term of
Eq. (43) by changing the denominator by �VDP. As the two
states have to belong to different bands, such a coupling may
arise only for the case of holes and takes the form

Hi ∼ �VDP

�lh
Heff, (75)

expanding the effective Hamiltonian up to the lowest order in
the band-shift difference �VDP = −(σhh − σlh)divδR, which
is the difference of the deformation potentials for the heavy-
and light-hole valence bands. We can thus relate the band-
shift mechanism to the position-shift one, comparing Eq. (62)
with (75). We find that the latter is described by an effective

constant α:

αeff = (σhh − σlh)σQl/�lh. (76)

If we estimate the potential difference by the typical value
of the potential itself (σhh − σlh) ∼ 5 eV, which is likely an
overestimated value, we get αeff = 17, so that the coupling
through band shifts leads to a rate at most comparable to (and
most probably much smaller than) that described by Eq. (73).

D. Renormalization of the spin-orbit length

Phonon-induced renormalization of band offsets influences
the spin-orbit couplings. This is evident from the expressions
for the coefficients λ which are inversely proportional to the
light-heavy–hole offset �lh [see Eqs. (A9)]. Even though
the coupling in the form of the constant α is described by
the same formula as in Eq. (76), the substantial difference is
that now the phonon-impurity coupling arises also through the
first term of the effective Hamiltonian because fluctuations
in spin-orbit fields induce fluctuations in the Knight field.
The corresponding αeff is the one given in Eq. (76) and the
relaxation rate is that in Eq. (67), so that it does not exceed the
rate due to the piezoelectric shift mechanism. For the case of
electrons, the effective constant follows in an analogous form

α = (σe − σh)σQlSO/�, (77)

where � is of the order of the conduction to valence band
offset, which enters the definition of the spin-orbit couplings
1/lSO. The numerical value for α is much less than one even
taking (σe − σh) ∼ σe, so that this channel is negligible with
respect to the geometrical shifts.

E. Phonon-induced spin-orbit interactions

Finally, we estimate the influence of spin-phonon
coupling through an additional spin-orbit interaction arising
in the presence of a phonon-originated electric field. We
assume the new spin-orbit interaction strength relates to the
one we considered in Sec. II, referred to as “old,” through
the ratio of the internal (interface) electric field Eint and the
phonon-induced electric field, the latter given as the gradient
of the appropriate potential [Eqs. (54) or (55)]. Since the
phonon-induced spin-orbit interaction (“new”) arises from an
electric field, it is of the Rashba functional form, and one
can take its effects to be additive to the “old” one. For elec-
trons, this means Utot = UoldUnew ≈ (1 + Oold)(1 + Onew) ≈
1 + (Oold + Onew), which amounts to additive inverse of the
spin-orbit lengths 1/lSO → 1/lSO + 1/lph-SO. By inspecting
Eq. (C5), we estimate the effective interaction to be described
again by Eq. (67) with the constant

αeff = Ql/eEint (78)

for the piezoelectric phonon field (a much smaller deformation
field corresponds to the numerator replaced by σQ2l). The
numerator evaluates to 106 V/m, which is not supposed to
be much higher than the internal field, so that again we find
that this mechanism is less important than the one due to
the piezoelectric shift. We come to a similar conclusion for
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holes. Namely, even though the phonon-induced piezoelectric
field is much stronger, of the order of 108 V/m, the spin-orbit
terms in the Kohn-Luttinger Hamiltonian are less effective
in inducing light-heavy–hole mixing than the terms we
considered explicitly in previous sections (see Appendix F
for details).

V. CONCLUSIONS

We have analyzed the interactions within an ensemble of
impurity spins, which are mediated by a confined spin-orbit
coupled particle. We have considered two physical systems
where such mediated interactions are of great importance:
III-V (GaAs) electronic lateral quantum dot with nuclear spins
as impurities, and II-VI (ZnTe) self-assembled Mn-doped
quantum dot populated by a hole. Our focus has been on the
consequences of the spin-orbit coupling on the character of the
mediated interactions.

We have derived an effective Hamiltonian for the impurity
ensemble, treating the particle-impurity interaction perturba-
tively. The form of this Hamiltonian allowed us to quantify the
degree to which the conservation of impurities spin is broken in
the presence of the spin-orbit coupling of the particle. We have
found that for the electron case, the spin-nonconserving terms
are suppressed relative to the spin-conserving ones by a small
factor, the ratio of the confinement length, and the spin-orbit
length. The lowest electron excited state is the most effective
mediator, which results in a decoherence being removable by
the electron spin echo even in the presence of the spin-orbit
coupling. In the case of holes, the spin-conserving interactions
are most efficiently mediated by the lowest light-hole state,
while the spin-nonconserving ones by the lowest heavy-hole
state. The induced decoherence is then not removable by a
hole spin echo anymore.

As a direct application of the derived effective Hamiltonian,
we have calculated the rates of a phonon-assisted impurity
spin relaxation, which arises only in the presence of the
spin-orbit coupling in the particle Hamiltonian. We have
considered several coupling mechanisms by which impurity
spins couple to phonons. We have found that the most effective
is the piezoelectric field induced shift of the particle wave
function, with a typical relaxation time of 1 μs in a 10-nm
self-assembled strain-free quantum dot. The rate grows upon
making the dot smaller, or diminishing the heavy-light–hole
splitting by strain, possibly to nanoseconds for reasonable
dot parameters. Furthermore, even when the identified μs
time scale of spin-lattice relaxation falls short of explaining
the observed fast magnetic polaron formation, it is still an
important quantity that determines the time scale on which the
magnetization can be switched. Namely, the polaron formation
is a complex process involving several stages with different
time scales and mechanisms.78 The rates we calculate (the
spin-lattice relaxation times) are those taking place at the end
(and after) the polaron formation. Although the final answer
has not been given yet, the latter is, most probably, due to
the direct (or super) exchange between Mn spins assisted by
atomic spin-orbit interactions in Mn clusters (see Ref. 79). This
is to be contrasted with the mechanism we consider, where
the spin dissipation is allowed by the valence band spin-orbit
coupling of the confined particle.

While we have focused on a single particle, our analysis of
the spin-nonconserving mechanisms already provides insights
in the magnetic ordering in quantum dots with multiple
occupancy. Our results are directly applicable for a dot
occupied by a few noninteracting particles, where the impurity
interaction is a sum of single-particle contributions. Interesting
and qualitatively new effects are expected once interactions
between the mediating particles are important, spanning
from Kondo physics and nonperturbative renormalization of
the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction80 to
thermally enhanced magnetism81 and the nanoscale analog
of the Wigner crystallization.68 In the transport studies, even
the well-established concept of spin filtering with magnetic
semiconductors82–85 can have important ramifications for
nanoscale structures such as quantum dots.86 The spin-
nonconserving mechanisms are also the key in understanding
the prediction of piezomagnetic quantum dots or, equivalently,
nonlinear magneto-electric effects.87 Changes in the shape
of lateral confinement (from circular to elliptical) controlled
by the pair of the gate electrodes have been demonstrated
experimentally to alter the particle configuration from van-
ishing to finite spin in nonmagnetic quantum dots.88 This
principle provides possibilities for the control of magnetic
ordering in dots with added Mn impurities where such changes
in the particle spin, through exchange interaction, would
reversibly control the magnetic ordering of the nearby Mn
spins.87 The characteristic time scale for the related magnetic
polaron formation, similar to the better studied quantum well
structures, should be largely determined by the anisotropic
spin-spin interactions of impurities which explicitly do not
conserve the total spin of Mn atoms.43,56,89,90

Beyond epitaxial dots that we have presently examined,
recent experimental advances in colloidal quantum dots
warrant also future considerations. Typically, they are easily
synthesized II-VI materials, such as ZnTe, ZnSe, CdS, and
CdSe,91,92 which offer a large size-induced tunability of the
transition energies and long spin decoherence times.93,94 Mag-
netic doping95 of these colloidal dots provides an opportunity
for a versatile control of magnetic order as well as leads
to robust magnetic polaron formation with effective internal
magnetic field approaching 100 T.43,95–99
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APPENDIX A: KOHN-LUTTINGER HAMILTONIAN
PERTURBATIVE EIGENSTATES

Here, we derive hole eigenstates in the lowest-order
perturbation theory. We neglect the influence of the conduction
and spin-orbit split-off subbands and consider only the light
(J = ± 1

2 ) and heavy (J = ± 3
2 ) holes in the Kohn-Luttinger
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Hamiltonian100 HJJ ′ . The diagonal elements are

H±3/2,±3/2 = − h̄2

2m0

[
k2
z (γ1 − 2γ2) + (

k2
x + k2

y

)
(γ1 + γ2)

]
,

H±1/2,±1/2 = − h̄2

2m0

[
k2
z (γ1 + 2γ2) + (

k2
x + k2

y

)
(γ1 − γ2)

]
,

(A1)

with h̄k = P the hole momentum operator, m0 the free-electron
mass, and γ1, γ2, and γ3 (below) the Luttinger parameters.
Together with the in-plane V (r) and heterostructure Vz(z)
confinement potentials, assumed to be those in Eq. (2), the
kinetic terms in Eq. (A1) define the dot unperturbed eigenstates
(normalization omitted)

�J
nm,k = r |m|e−r2/2l2

J L|m|
n

(
r2/l2

J

)
eimφ sin(kπz/w). (A2)

We used cylindrical coordinates (r,φ,z), Lm
n are the associated

Laguerre polynomials, lJ the in-plane confinement length
(which differs for heavy and light holes due to their different
masses), and w the heterostructure width. The Fock-Darwin
states are labeled by the principal and orbital quantum numbers
n and m, and k labels excitations in the perpendicular potential.
The corresponding energies are

EJ,nm,k = h̄�J (2n + |m| + 1) + h̄2

2mJ w2
π2k2, (A3)

where the in-plane excitation energy is parametrized by the
mass and confinement length

h̄�J = h̄2

mJ l2
J

. (A4)

The in-plane masses are given by Eq. (A1): m±3/2 ≡ mhh =
m0/(γ1 + γ2), m±1/2 ≡ mlh = m0/(γ1 − γ2). We parametrize
the in-plane electrostatic potential choosing a value for the
heavy-hole in-plane excitation energy E3/2,01,0 − E3/2,00,0 =
h̄�hh, which then specifies the confinement lengths. The light-
hole excitation energy and confinement length

�lh = �hh(mhh/mlh)1/2, llh = lhh(mhh/mlh)1/4 (A5)

differ from the corresponding heavy-hole quantities due to
a different in-plane mass. The energies of the hard-wall
eigenstates also differ for heavy and light holes due to
different out-of-plane masses, which are m0/(γ1 + 2γ2) and
m0/(γ1 − 2γ2), respectively. We set w by choosing a value for
the light-heavy–hole offset E3/2,00,0 − E1/2,00,0 = �lh.

Taking the above eigenstates as the basis, we now pertur-
batively take into account the off-diagonal elements of the
Hamiltonian

H±3/2,±1/2 = ± h̄2

2m0
2
√

3γ3k∓kz,

H±3/2,∓1/2 = h̄2

2m0

√
3

[
γ2

(
k2
x − k2

y

) ∓ 2iγ3kxky

]
, (A6)

H±3/2,∓3/2 = 0 = H±1/2,∓1/2.

We employ the nondegenerate perturbation theory

|�Ja〉 = |J 〉 ⊗ ∣∣�J
a

〉 + ∑
J ′a′ �=Ja

〈
�J ′

a′
∣∣HJ ′J

∣∣�J
a

〉
EJa − EJ ′a′

|J ′〉 ⊗ ∣∣�J ′
a′

〉
,

(A7)

where we use the notation introduced below Eq. (4), so that a

includes two quantum numbers of the in-plane Fock-Darwin
state and one of the perpendicular hard-wall state. To proceed,
we neglect high-energy excitations n > 0 and k > 1 and adopt
the axial approximation

H±3/2,∓1/2 ≈ h̄2

2m0

√
3γ k2

∓, (A8)

with γ = (γ2 + γ3)/2. With these simplifications, the other-
wise infinite sum for |�Ja〉 simplifies to only a single term for
each J ′ �= J and can be given explicitly.101,102 We finally get
Eq. (9) with the admixtures

λ1 = h̄2

m0llhw

γ3

√
3κξ

�∗ + h̄�lh
, (A9a)

λ0 = h̄2

m0l
2
lh

γ
√

3/2κ

�lh + 2h̄�lh
, (A9b)

where �∗ = E1/2,00,1 − E3/2,00,0 is the z-excited light-hole
offset and

κ = 〈
�hh

00,0

∣∣�lh
00,0

〉 = 2

(mhh/mlh)1/4 + (mlh/mhh)1/4
(A10)

is the ground-state overlap. Finally, the dimensionless matrix
element ξ is defined by ξ = −iw〈1|kz|0〉 = 8

3 .
The admixture of a 1

2 light hole into a 3
2 heavy hole scales

as 1/wl, costs the in-plane plus perpendicular orbital energy
(the latter is larger than the light-heavy–hole offset), and leads
to an admixture with a very different z profile than the main
wave-function component. The admixture of the − 1

2 light hole
has a smaller numerator, proportional to 1/l2, but costs only the
in-plane orbital energy (several times smaller than the light-
heavy–hole offset) and has the same z profile as the main
component.

Along the same lines, we get Eq. (11) with

λ′
1 = h̄2

m0lhhw

γ3

√
3κξ

�∗′ + h̄�hh
, (A11a)

λ′
0 = h̄2

m0l
2
hh

γ
√

3/2κ

�lh − 2h̄�hh
, (A11b)

where �∗′ = E3/2,00,1 − E1/2,00,0 is the z-excited heavy-hole
offset.

For completeness, we list the hole Zeeman term103

HhZ = 2κμBJ · B + 2qμB

∑
i=x,y,z

J 3
i Bi, (A12)

which can be written for the heavy-hole subspace as

Hhh,Z = ghhμB[J/3]z · Bz, (A13)

with J/3 ≡ σ/2 the pseudospin operator and ghh ≡ 6κ +
27q/2 ≈ 2 for GaAs.102

APPENDIX B: SPIN MATRIX ELEMENTS FOR HOLES

Here, we calculate the matrix elements of the spin operator
between hole perturbative eigenstates. For the purposes of this
Appendix, we shorten the expression in Eq. (9), introducing
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� = �hh
00,0, a = λ1�

lh
01,1, and b = λ0�

lh
02,0 to

|�3/2〉 = �|3/2〉 + a|1/2〉 + b|−1/2〉, (B1)

|�−3/2〉 = �∗|−3/2〉 − a∗|−1/2〉 + b∗|1/2〉. (B2)

We denote J± = Jx ± iJy , so that Jx = (J+ + J−)/2 and
Jy = (J+ − J−)/2i. Since the orbital operator in all the matrix
elements is the delta function δ(R − Rn), all the complex
amplitudes below should be evaluated at the position of the
particular impurity, e.g., � → �(Rn). Listing only the leading
order in small quantities λ0,1, to which a and b are proportional,
we have

〈�3/2|Jz|�3/2〉 = (3/2)|�|2 + O(λ2), (B3a)

〈�3/2|J+|�3/2〉 =
√

3�∗a + O(λ2), (B3b)

〈�3/2|J−|�3/2〉 =
√

3�a∗ + O(λ2), (B3c)

from where Eq. (19) follows directly. The time-reversal
symmetry gives (using 〈T a|b〉 = −〈a|T b〉∗, and T 2 = −1)

〈�−3/2|J|�−3/2〉 = −〈�3/2|J|�3/2〉, (B4)

so that the spin expectation value changes sign upon inverting
the hole spin. To evaluate the off-diagonal element of the
Overhauser field and the vectors A we need

〈�−3/2|Jz|�3/2〉 = ab, (B5a)

〈�−3/2|J+|�3/2〉 = 2b2, (B5b)

〈�−3/2|J−|�3/2〉 = 2
√

3�b + O(λ2), (B5c)

from where Eq. (30) follows.
We use analogous shorthand notation for the light hole

�′ = �lh
00,0, a′ = λ′

1�
hh
01,1

, and b′ = λ′
0�

hh
02,0

to write

|�1/2〉 = �′|1/2〉 + a′|3/2〉 − b′|−3/2〉, (B6)

|�−1/2〉 = �′∗|−1/2〉 − a′∗|−3/2〉 − b′∗|3/2〉. (B7)

The light-hole-mediated effective interaction is given by

〈�3/2|Jz|�1/2〉 = (3/2)�∗a′ + (1/2)a∗�′, (B8a)

〈�3/2|J+|�1/2〉 =
√

3�∗�′ + O(λ2), (B8b)

〈�3/2|J−|�1/2〉 = 2�′b∗ + O(λ2). (B8c)

Finally, the coupling through the spin-opposite light-hole state
is given by

〈�3/2|Jz|�−1/2〉 = −(3/2)�∗b′∗ − (1/2)b∗�∗′, (B9a)

〈�3/2|J+|�−1/2〉 = 2a∗�′∗ + O(λ2), (B9b)

〈�3/2|J−|�−1/2〉 = −
√

3b′∗a∗. (B9c)

APPENDIX C: KNIGHT FIELD AND
ROTATED COORDINATES

Here, we evaluate the Knight field, its spatial derivative,
and the corresponding locally rotated coordinate frame.

1. Electron case

The Knight field of an electron in the ground state is

K = −(β/2)|�G(R)|2〈s(R)〉 (C1)

[see Eq. (18)]. In deriving that, we used the identity

UJU † = R−1
U [J], (C2)

where the unitary operator of spinor rotation

U ≡ exp(−i n · J φ) (C3)

corresponds to a three-dimensional rotation around the unit
vector n by angle φ,

RU = exp(−i n · l φ), (C4)

with (lk)mn = −iεkmn.
The spatial derivative of the Knight field, which gives the

matrix elements for the impurity spin flips in the “first-order”
rates, follows from Eq. (C1) as

∇K = [∇ ln(|�G(R)|2)]K + (∇nso) × K. (C5)

The two terms correspond, respectively, to the position change
in the magnitude and direction of vector K.

For electrons we consider a regime in which the total field is
dominated by the external field. The impurity local coordinate
system then coincides with the coordinate frame defined by
the external magnetic field RBn ≈ 1 and ẑ′ = s0. This allows
us to estimate the components of ∇K transversal to the local
coordinate system as

r′± · ∇K ∼ δ−1(l/ lSO)K, (C6)

which originate in the first term of Eq. (C5) and where the
length δ = l for a phonon with in-plane polarization vector
(e ⊥ ẑ) and δ = w/π for a phonon with a polarization vector
along the growth direction (e ‖ ẑ). The second term of Eq. (C5)
gives a contribution at most as large as the first term, or lower,
depending on the phonon polarization.

2. Holes

The Knight field of a spin- 3
2 hole, defined by Eq. (17),

Kn = −β〈�3/2|δ(R − Rn) J |�3/2〉, (C7)

follows from Eqs. (B3) as[
Kn

x ,Kn
y ,Kn

z

] = −β[
√

3 Re(a�∗),
√

3 Im(a�∗),3/2 |�|2],

(C8)

given in the main text in Eq. (19), here using the notation from
Appendix B a = λ1�

lh
01,1(Rn) and � = �hh

00,0(Rn). Since for
holes we are interested in the zero magnetic field case (by
which � is real), the local coordinate frame is defined by a
unit vector along the Knight field ẑ′ = K/K:

ẑ′ = [sin φ Re(a)/|a|, sin φ Im(a)/|a|, cos φ]. (C9)

Here, φ is the angle between the original and the rotated z axes,
cos φ = ẑ · ẑ′ = �/

√
3�2/4 + |a|2. We choose the remaining

two axes of the rotated coordinate system arbitrarily as

ŷ′ = [−Im(a)/|a|,Re(a)/|a|,0] (C10)

and

x̂′ = ŷ′ × ẑ′ = [cos φ Re(a)/|a|, cos φ Im(a)/|a|,− sin φ].

(C11)

Using the projectors into the transversal plane of the local
coordinate system r′±, one can evaluate the amplitudes of the
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spin-nonconserving terms. As an auxiliary result, we note that
for any real vector v we have

r′± · v = v+
a∗

|a|
cos φ ± 1

2
+ v−

a

|a|
cos φ ∓ 1

2
− vz sin φ.

(C12)

For example, close to the dot center, the inequality � � |a|
gives sin φ ≈ |a|/√3/2�, cos φ ≈ 1, |a| ∼ λ1�, and the
Knight field derivative follows as

r′± · ∇K ∼ δ−1
√

3λ1β
∣∣�hh

00,0

∣∣2
, (C13)

where, again, the length δ depends on the direction of the
phonon polarization vector, δ = l for eQ ⊥ ẑ and δ = w/π for
eQ ‖ ẑ.

APPENDIX D: INTERACTIONS IN THE IMPURITY
ENSEMBLE: VECTORS A AND THE EFFECTIVE

HAMILTONIAN TERMS

The interaction part of the effective Hamiltonian in Eq. (43)
for a given impurity pair n,m equals 1/(EG − Ep) times the
following expression:

(An · In)(Am · Im)† + (Am · Im)(An · In)†

= I n
z Im

z

(
An

zA
m∗
z + Am

z An∗
z

) + I n
+Im

− (An
−Am∗

− + Am
+An∗

+ )/4

+ I n
−Im

+ (An
+Am∗

+ + Am
−An∗

− )/4 + I n
z Im

+
(
An

zA
m∗
+

+Am
−An∗

z

)/
2 + I n

+Im
z

(
An

−Am∗
z + Am

z An∗
+

)/
2

+ I n
z Im

−
(
An

zA
m∗
− + Am

+An∗
z

)/
2 + I n

−Im
z

(
An

+Am∗
z

+Am
z An∗

−
)/

2 + I n
+Im

+ (An
−Am∗

+ + Am
−An∗

+ )/4

+ I n
−Im

− (An
+Am∗

− + Am
+An∗

− )/4. (D1)

If the vectors are expressed in the local coordinate frame [that
is, all quantities in Eq. (D1) with tildes], the first three terms are
spin preserving (connect states with the sum of spin projections
along the local spin quantization axes), the next four terms
change the sum by one (representing a single spin flip), and
the last two terms induce double flips. The complex conjugates
are defined as

Am∗
± ≡ (r′± · Am)∗ = Am∗

x ∓ iAm∗
y = r′∓ · (Am)∗. (D2)

To find the effective Hamiltonian, it remains to evaluate the
vectors A. For electrons, we assume that the magnetic field
dominates the total field for impurities. Equation (25) gives

(J = 1
2 , J ′ = − 1

2 )

An = −(β/2)|�G(Rn)|2RUn
[r′−], (D3)

where we remind that the vectors x̂′, ŷ′, and ŝ0 = ẑ′ form an
orthonormal set, with ŝ0 along the external field. Expanding
the rotation operator in the lowest order in the spin-orbit length
we finally find

An
− ∼ −(β/2)|�G(Rn)|2, An

+,An
z ∼ O(rn/ l)An

−, (D4)

from where Eq. (50) of the main text follows.
For holes, we find the vectors A corresponding to the

interaction mediated by the − 3
2 state from Eqs. (B5) and (C12)

as

r′+ · A = −βb2(a/|a|)(cos φ + 1),

r′− · A = −
√

3β�b(a/|a|)(cos φ + 1), (D5)

ẑ′ · A = −
√

3β�b(a/|a|) cos φ.

The largest spin-nonconserving term of the corresponding
effective Hamiltonian is

Hnm
++ ∼ Ĩ n

+Ĩ m
+

(
1

EG − Ep

2
√

3(β�2)2λ2
0

)
. (D6)

The vectors A for the spin-alike light hole, using Eqs. (B8),
follow as

r′+ · A = −
√

3β�∗�′(a∗/|a|)(cos φ + 1)/2,

r′− · A = −β�′b∗(cos φ + 1), (D7)

ẑ′ · A = −(β/2)(3a′�∗ + a∗�′) cos φ.

From the above results, we see that the largest spin-
nonconserving terms in the effective interaction are

Hnm
++ ∼ Ĩ n

+Ĩ m
+

(
1

�lh

√
3(β�2)2λ0

)
(D8)

and

Hnm
+z ∼ Ĩ n

+Ĩ m
z

(
1

�lh
(3/4)

√
3(β�2)2λ′

1

)
. (D9)

Similarly as before, a differentiation with respect to the
position, which enters the relaxation rates, can be in
Eqs. (D6)–(D9) approximated as a multiplication by 1/δ.

APPENDIX E: MATERIALS PARAMETERS

For the electronic case, we assume a GaAs/AlGaAs het-
erostructure with the following parameters: electron effective

TABLE II. g factor, magnetic moment, spin, the corresponding energy scale, and the effective field Beff . For GaAs nuclear spins, the g

factor is the average over naturally abundant isotopes. The effective field for impurities is the Knight field Beff = J (β/V ), for the particle it is
the Overhauser field Beff = √

NI (I + 1)(β/V ).

Quantity Nucleus Mn Electron Hole

g 1.2 2 −0.44 − 2
3

μ μN μB μB μB

I or J 3
2

5
2

1
2

3
2

gμI 57 neV/T 290 μeV/T 12.7 μeV/T 58 μeV/T
gμI/kB 660 μK/T 3.4 K/T 146 mK/T 670 mK/T
Beff 33 peV 96 μeV 145 neV 13.8 x

1/2
Mn meV

Beff/(gμI ) 0.6 mT 331 mT 12 mT 237 x
1/2
Mn T
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TABLE III. Effective volume, number of impurities, and the
coupling energy scale.

Quantity Electron Hole

V 3 ×104 nm3 238 nm3

N 1.3 × 106 xMn× 5278
β/V 66 peV 64 μeV

mass m = 0.067 m0, in-plane confinement length l = 30 nm,
quantum well width w = 8 nm, spin-orbit length lSO ∼ 1 μm,
electron-nuclear coupling β = 2 μeV nm3, material density
ρ = 5300 kg/m3, phonon velocities cl = 5290 m/s, and
ct = 2480 m/s, conduction band piezoelectric  = 1.4 ×
109 eV/m, and deformation σ = 10 eV potentials. The g

factors and corresponding energy scales are given in Table II.
For the hole case, we list the Luttinger parameters γ1/γ2/γ3

of GaAs (Refs. 104 and 105): 7.1/2/2.9, CdTe (Ref. 106):
4.1/1.1/1.6, and ZnTe (Ref. 107): 3.8/0.7/1.3. We take ZnTe
as the material of our choice, with ρ = 5650 kg/m3, cl =
3550 m/s, ct = 2358 m/s, σ = 5 eV,  = 3.4 × 108 eV/m.
We set the heavy-hole orbital energy h̄�hh to 20 meV, which
gives lhh = 4.19 nm, llh = 3.82 nm, and h̄�lh = 17 meV. We
set the light-heavy–hole splitting �lh to 100 meV, which gives
w = 3.24 nm. The hole-impurity interaction strength is β =
1/3 eV a3

0/4, with a0 = 0.61 nm the lattice constant. We as-
sume the Mn impurities concentration is given as xMn, the ratio
of cation replaced by Mn atoms, typically of the order of 1%.

Properly normalized, the ground state follows from
Eq. (A7) as

�J
00,0(r,φ,z) =

√
2

w
sin

(
πz

w

)
1√
πlJ

exp

(
− r2

2l2
J

)
, (E1)

from where the quantum dot volume estimate

V = 1/

∫
d3R |�(R)|4 = (4π/3)wl2

J (E2)

gives values in Table III.
From the above parameters, the hole admixture coefficients

follow as λ0 ≈ 0.053, λ1 ≈ 0.050, λ′
0 ≈ 0.11, and λ′

1 ≈ 0.15.

APPENDIX F: ALTERNATIVE
HOLE-MIXING MECHANISMS

In this section, we estimate two additional light-heavy–
hole admixture sources, namely, the spin-orbit coupling to
an external electric field (the Rashba spin-orbit interaction)
and Overhauser impurity field itself. We quantify the resulting

light-heavy–hole admixture by calculating the corresponding
coefficients λ. We find that these alternatives lead to a smaller
amount of admixture, compared to the terms of the Kohn-
Luttinger Hamiltonian we considered in the main text.

An electric field E induces the following term in the hole
Hamiltonian (in the notation of Ref. 100):

Hr
8v8v = r8v8v

41 E · J × k. (F1)

Assuming, for convenience, that the field is perpendicular to
the heterostructure interface E = ẑE, this term translates into
our notation of Appendix A as

H SO
±3/2,±1/2 = ±r8v8v

41 E
√

3k∓/2, (F2)

where the material parameter r8v8v
41 we estimate by its ZnSe

value of −4.1 eÅ2. Taking Eq. (A7) for the heavy-hole
ground state |�3/2〉, the Rashba spin-orbit interaction leads
to an admixture of the light-hole state |1/2〉 ⊗ |�lh

01,0〉 with a
coefficient

λSO = − i

2

√
3r8v8v

41 E

�lh + h̄�lh
. (F3)

To quantify its value, it remains to put in the value for the
electric field E. We estimate it to be of order 107 V/m, using
a crude electrostatic model; namely, we take the hole to be a
point charge in the center of a half-sphere of a radius l ∼ 5 nm
and the electron to be a uniform classical charge density σ on
the half-sphere, which corresponds to the type-II quantum dot
populated by a single exciton. The resulting internal field E =
σ/2ε is smaller than the piezoelectric field accompanying the
phonon [Eq. (78)], which we estimated to be of order 108 V/m.
Inserting this latter value for E, we find λSO ≈ √

3 × 10−3, so
that both the internal electric field as well as phonon-induced
fields induce light-heavy–hole admixtures much smaller than
those we considered in the main text.

One may also consider the collective field of the impurities
(the Overhauser field) as a source of the light-heavy–hole
mixing. Using Eqs. (B8), we estimate the arising admixture of
the light-hole state |1/2〉 ⊗ |�lh

00,0〉 into the heavy-hole ground
state

|λMn|2 ≈ (β/V )2NI (I + 1)

2�lh
. (F4)

The previous is a typical value, the phase being fixed by
the microscopic state of the Mn ensemble. Evaluating for
our parameters, we get λMn ≈ 7 × 10−3, typically an order
of magnitude smaller admixture as that considered in the main
text, so we can again neglect this admixture source.
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I. Žutić, Phys. Rev. B 86, 161403(R) (2012).

82L. Esaki, P. J. Stiles, and S. von Molnar, Phys. Rev. Lett. 19, 852
(1967).

83J. S. Moodera, X. Hao, G. A. Gibson, and R. Meservey, Phys. Rev.
Lett. 61, 637 (1988).

84J. C. Egues, Phys. Rev. Lett. 80, 4578 (1998).
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