363 research outputs found

    The Review of Economic Performance and Social Progress 2001: The Longest Decade: Canada in the 1990s

    Get PDF
    In this chapter, Kathleen Day and R. Quentin Grafton explore the relationship between the economy and the environment. One approach sees economic growth leading to environmental degradation by imposing stresses on limited natural resources and ecosystems and by increasing emissions of pollutants. A second perspective argues the opposite relationship holds. Economic growth, once a certain level is achieved, leads to a cleaner environment as the higher income shifts societal preferences toward a better quality of the environment and at the same time provides the resources to produce such an environment. In addition, it is argued that economic growth is increasingly service-based, decoupling pollution from economic activity. The authors examine the relationship between economic growth and environmental degradation in Canada. The implication of their findings is that economic growth by no means resolves environmental problems.Growth, Environment, Emissions, Emission, Pollution, Pollutants, Pollutant, Natural Resources, Natural Resource, Non-renewable, Nonrenewable, Renewable

    The Review of Economic Performance and Social Progress 2002: Towards a Social Understanding of Productivity

    Get PDF
    In this chapter, Quentin Grafton, Stephen Knowles and Dorian Owen examine the implications for productivity arising from the level of social diversity along a variety of dimensions, including ethnic, linguistic and religious differences and inequalities between rich and poor. Their basic intuition is that human beings tend to associate and communicate most readily with people similar to themselves, and their hypothesis is therefore that "social divergence" generates social barriers to communication among groups, inhibiting the diffusion of knowledge and lowering the level of productivity in the economy. As a consequence, the more diverse the society and the greater the number of distinct social groups, the higher are the communication costs and the greater are the barriers to the exchange of ideas and innovation.Social Divergence, Social Values, Social Capital, Total Factor Productivity, Multifactor Productivity, Multi-factor Productivity, Fractionalization, Homogeneity, Heterogeneity, Productivity, Labour Productivity, Labor Productivity, Growth, Inequality, Educational Inequality, Networks, Trust, Social Networks, Language, Education, Religion, Social Cohesion, Cohesion

    McGill wetland model: evaluation of a peatland carbon simulator developed for global assessments

    Get PDF
    We developed the McGill Wetland Model (MWM) based on the general structure of the Peatland Carbon Simulator (PCARS) and the Canadian Terrestrial Ecosystem Model. Three major changes were made to PCARS: (1) the light use efficiency model of photosynthesis was replaced with a biogeochemical description of photosynthesis; (2) the description of autotrophic respiration was changed to be consistent with the formulation of photosynthesis; and (3) the cohort, multilayer soil respiration model was changed to a simple one box peat decomposition model divided into an oxic and anoxic zones by an effective water table, and a one-year residence time litter pool. MWM was then evaluated by comparing its output to the estimates of net ecosystem production (NEP), gross primary production (GPP) and ecosystem respiration (ER) from 8 years of continuous measurements at the Mer Bleue peatland, a raised ombrotrophic bog located in southern Ontario, Canada (index of agreement [dimensionless]: NEP = 0.80, GPP = 0.97, ER = 0.97; systematic RMSE [g C m<sup>−2</sup> d<sup>−1</sup>]: NEP = 0.12, GPP = 0.07, ER = 0.14; unsystematic RMSE: NEP = 0.15, GPP = 0.27, ER = 0.23). Simulated moss NPP approximates what would be expected for a bog peatland, but shrub NPP appears to be underestimated. Sensitivity analysis revealed that the model output did not change greatly due to variations in water table because of offsetting responses in production and respiration, but that even a modest temperature increase could lead to converting the bog from a sink to a source of CO<sub>2</sub>. General weaknesses and further developments of MWM are discussed

    McGill Wetland Model: evaluation of a peatland carbon simulator developed for global assessments

    No full text
    International audienceWe developed the McGill Wetland Model (MWM) based on the general structure of the Peatland Carbon Simulator (PCARS) and the Canadian Terrestrial Ecosystem Model. Three major changes were made to PCARS: 1. the light use efficiency model of photosynthesis was replaced with a biogeochemical description of photosynthesis; 2. the description of autotrophic respiration was changed to be consistent with the formulation of photosynthesis; and 3. the cohort, multilayer soil respiration model was changed to a simple one box peat decomposition model divided into an oxic and anoxic zones by an effective water table, and a one-year residence time litter pool. MWM was then evaluated by comparing its output to the estimates of net ecosystem production (NEP), gross primary production (GPP) and ecosystem respiration (ER) from 8 years of continuous measurements at the Mer Bleue peatland, a raised ombrotrophic bog located in southern Ontario, Canada (index of agreement [dimensionless]: NEP=0.80, GPP=0.97, ER=0.97; systematic RMSE [g C m?2 d?1]: NEP=0.12, GPP=0.07, ER=0.14; unsystematic RMSE [g C m?2 d?1]: NEP=0.15, GPP=0.27, ER=0.23). Simulated moss NPP approximates what would be expected for a bog peatland, but shrub NPP appears to be underestimated. Sensitivity analysis revealed that the model output did not change greatly due to variations in water table because of offsetting responses in production and respiration, but that even modest temperature increases could lead to converting the bog from a sink to a source of CO2. General weaknesses and further developments of MWM are discussed

    Improving routing in networks of Unmanned Aerial Vehicles: Reactive-Greedy-Reactive

    Get PDF
    Because of their specific characteristics, Unmanned Aeronautical Ad-hoc Networks (UAANETs) can be classified as a special kind of mobile ad hoc networks. Because of the high mobility of Unmanned Aerial Vehicles, designing a good routing protocol for UAANETs is challenging. Here, we present a new protocol called Reactive-Greedy-Reactive (RGR) as a promising routing protocol in high mobility and density-variable scenarios. RGR combines features of reactive MANET routing protocols such as Ad-hoc On-demand Distance Vector with geographic routing protocols, exploiting the unique characteristics of UAANETs. In addition to combining reactive and geographic routing, the protocol has a number of features to further improve the overall performance. We present the rationale and design of the protocol, discuss the specific performance improvements in detail and provide extensive simulation results that demonstrate that RGR outperforms purely reactive or geographic routing protocols. The results also demonstrate the impact of the various protocol modifications

    The UK risk assessment scheme for all non-native species

    Get PDF
    1. A pest risk assessment scheme, adapted from the EPPO (European and Mediterranean Plant Protection Organisation) scheme, was developed to assess the risks posed to UK species, habitats and ecosystems by non-native taxa. 2. The scheme provides a structured framework for evaluating the potential for non-native organisms, whether intentional or unintentional introductions, to enter, establish, spread and cause significant impacts in all or part of the UK. Specialist modules permit the relative importance of entry pathways, the vulnerability of receptors and the consequences of policies to be assessed and appropriate risk management options to be selected. Spreadsheets for summarising the level of risk and uncertainty, invasive attributes and economic impact were created. In addition, new methods for quantifying economic impact and summarising risk and uncertainty were explored. 3. Although designed for the UK, the scheme can readily be applied elsewhere

    Considering Fish as Recipients of Ecosystem Services Provides a Framework to Formally Link Baseline, Development, and Post-operational Monitoring Programs and Improve Aquatic Impact Assessments for Large Scale Developments.

    Get PDF
    In most countries, major development projects must satisfy an Environmental Impact Assessment (EIA) process that considers positive and negative aspects to determine if it meets environmental standards and appropriately mitigates or offsets negative impacts on the values being considered. The benefits of before-after-control-impact monitoring designs have been widely known for more than 30 years, but most development assessments fail to effectively link pre- and post-development monitoring in a meaningful way. Fish are a common component of EIA evaluation for both socioeconomic and scientific reasons. The Ecosystem Services (ES) concept was developed to describe the ecosystem attributes that benefit humans, and it offers the opportunity to develop a framework for EIA that is centred around the needs of and benefits from fish. Focusing an environmental monitoring framework on the critical needs of fish could serve to better align risk, development, and monitoring assessment processes. We define the ES that fish provide in the context of two common ES frameworks. To allow for linkages between environmental assessment and the ES concept, we describe critical ecosystem functions from a fish perspective to highlight potential monitoring targets that relate to fish abundance, diversity, health, and habitat. Finally, we suggest how this framing of a monitoring process can be used to better align aquatic monitoring programs across pre-development, development, and post-operational monitoring programs

    Original observations of Desmozoon lepeophtherii, a microsporidian hyperparasite infecting the salmon louse Lepeophtheirus salmonis, and its subsequent detection by other researchers

    Get PDF
    A microsporidian hyperparasite, Desmozoon lepeophtherii, of the parasitic copepod Lepeophtheirus salmonis (salmon louse), infecting farmed Atlantic salmon (Salmo salar), was first discovered in the west of Scotland in 2000. Heavily infected salmon lice are easily recognised as they have large opaque inclusions distributed throughout the body. The prevalence of salmon lice with visible signs of microsporidiosis can be up to 10% of the population from certain farm sites. The microsporidian was also isolated from the host Atlantic salmon suggesting it may have a two host life cycle. The authors believe that the infection in immunocompetent salmon may be latent, becoming acute during periods of infection with another pathogen or during sexual maturation. Since its first discovery in Scotland, Desmozoon lepeophtherii has been subsequently reported from Norway, and more recently from the Pacific coast of North America
    corecore