1,223 research outputs found
First Long-Term Application of Squeezed States of Light in a Gravitational-Wave Observatory
We report on the first long-term application of squeezed vacuum states of
light to improve the shot-noise-limited sensitivity of a gravitational-wave
observatory. In particular, squeezed vacuum was applied to the German/British
detector GEO600 during a period of three months from June to August 2011, when
GEO600 was performing an observational run together with the French/Italian
Virgo detector. In a second period squeezing application continued for about 11
months from November 2011 to October 2012. During this time, squeezed vacuum
was applied for 90.2% (205.2 days total) of the time that science-quality data
was acquired with GEO600. Sensitivity increase from squeezed vacuum application
was observed broad-band above 400Hz. The time average of gain in sensitivity
was 26% (2.0dB), determined in the frequency band from 3.7kHz to 4.0kHz. This
corresponds to a factor of two increase in observed volume of the universe, for
sources in the kHz region (e.g. supernovae, magnetars). We introduce three new
techniques to enable stable long-term application of squeezed light, and show
that the glitch-rate of the detector did not increase from squeezing
application. Squeezed vacuum states of light have arrived as a permanent
application, capable of increasing the astrophysical reach of
gravitational-wave detectors.Comment: 4 pages, 4 figure
Apex Exponents for Polymer--Probe Interactions
We consider self-avoiding polymers attached to the tip of an impenetrable
probe. The scaling exponents and , characterizing the
number of configurations for the attachment of the polymer by one end, or at
its midpoint, vary continuously with the tip's angle. These apex exponents are
calculated analytically by -expansion, and numerically by simulations
in three dimensions. We find that when the polymer can move through the
attachment point, it typically slides to one end; the apex exponents quantify
the entropic barrier to threading the eye of the probe
A simple high-sensitivity technique for purity analysis of xenon gas
We report on the development and performance of a high-sensitivity
purity-analysis technique for gaseous xenon. The gas is sampled at macroscopic
pressure from the system of interest using a UHV leak valve. The xenon present
in the sample is removed with a liquid-nitrogen cold trap, and the remaining
impurities are observed with a standard vacuum mass-spectroscopy device. Using
calibrated samples of xenon gas spiked with known levels of impurities, we find
that the minimum detectable levels of N2, O2, and methane are 1 ppb, 160 ppt,
and 60 ppt respectively. This represents an improvement of about a factor of
10,000 compared to measurements performed without a coldtrap.Comment: 20 pages, 5 figure
The Critical Coupling Likelihood Method: A new approach for seamless integration of environmental and operating conditions of gravitational wave detectors into gravitational wave searches
Any search effort for gravitational waves (GW) using interferometric
detectors like LIGO needs to be able to identify if and when noise is coupling
into the detector's output signal. The Critical Coupling Likelihood (CCL)
method has been developed to characterize potential noise coupling and in the
future aid GW search efforts. By testing two hypotheses about pairs of
channels, CCL is able to identify undesirable coupled instrumental noise from
potential GW candidates. Our preliminary results show that CCL can associate up
to of observed artifacts with , to local noise sources,
while reducing the duty cycle of the instrument by . An approach
like CCL will become increasingly important as GW research moves into the
Advanced LIGO era, going from the first GW detection to GW astronomy.Comment: submitted CQ
Complete physical simulation of the entangling-probe attack on the BB84 protocol
We have used deterministic single-photon two qubit (SPTQ) quantum logic to
implement the most powerful individual-photon attack against the
Bennett-Brassard 1984 (BB84) quantum key distribution protocol. Our measurement
results, including physical source and gate errors, are in good agreement with
theoretical predictions for the Renyi information obtained by Eve as a function
of the errors she imparts to Alice and Bob's sifted key bits. The current
experiment is a physical simulation of a true attack, because Eve has access to
Bob's physical receiver module. This experiment illustrates the utility of an
efficient deterministic quantum logic for performing realistic physical
simulations of quantum information processing functions.Comment: 4 pages, 5 figure
Study of a zirconium getter for purification of xenon gas
Oxygen, nitrogen and methane purification efficiencies for a common zirconium
getter are measured in 1050 Torr of xenon gas. Starting with impurity
concentrations near 10^{-6} g/g, the outlet impurity level is found to be less
than 120*10^{-12} g/g for O2 and less than 950*10^{-12} g/g for N2. For methane
we find residual contamination of the purified gas at concentrations varying
over three orders of magnitude, depending on the purifier temperature and the
gas flow rate. A slight reduction in the purifier's methane efficiency is
observed after 13 mg of this impurity has been absorbed, which we attribute to
partial exhaustion of the purifier's capacity for this species. We also find
that the purifier's ability to absorb N2 and methane can be extinguished long
before any decrease in O2 performance is observed, and slower flow rates should
be employed for xenon purification due to the cooling effect that the heavy gas
has on the getter.Comment: 14 pages, 5 figure
A Xenon Condenser with a Remote Liquid Storage Vessel
We describe the design and operation of a system for xenon liquefaction in
which the condenser is separated from the liquid storage vessel. The condenser
is cooled by a pulse tube cryocooler, while the vessel is cooled only by the
liquid xenon itself. This arrangement facilitates liquid particle detector
research by allowing easy access to the upper and lower flanges of the vessel.
We find that an external xenon gas pump is useful for increasing the rate at
which cooling power is delivered to the vessel, and we present measurements of
the power and efficiency of the apparatus.Comment: 22 pages, 7 figures Corrected typos in authors lis
A prototype vector magnetic field monitoring system for a neutron electric dipole moment experiment
We present results from a first demonstration of a magnetic field monitoring system for a neutron electric dipole moment experiment. The system is designed to reconstruct the vector components of the magnetic field in the interior measurement region solely from exterior measurements
- …