1,983 research outputs found

    Spin-axis attitude estimation and magnetometer bias determination for the AMPTE mission

    Get PDF
    Algorithms were developed for magnetometer biases and spin axis attitude calculation. Numerical examples of the performance of the algorithm are given

    Trapped Ar isotopes in meteorite ALH 84001 indicate Mars did not have a thick ancient atmosphere

    Get PDF
    Water is not currently stable in liquid form on the martian surface due to the present mean atmospheric pressure of ∼7 mbar and mean global temperature of ∼220 K. However, geomorphic features and hydrated mineral assemblages suggest that Mars’ climate was once warmer and liquid water flowed on the surface. These observations may indicate a substantially more massive atmosphere in the past, but there have been few observational constraints on paleoatmospheric pressures. Here we show how the [superscript 40]Ar/[superscript 36]Ar ratios of trapped gases within martian meteorite ALH 84001 constrain paleoatmospheric pressure on Mars during the Noachian era [∼4.56–3.8 billion years (Ga)]. Our model indicates that atmospheric pressures did not exceed ∼1.5 bar during the first 400 million years (Ma) of the Noachian era, and were <400 mbar by 4.16 Ga. Such pressures of CO[subscript 2] are only sufficient to stabilize liquid water on Mars’ surface at low latitudes during seasonally warm periods. Other greenhouse gases like SO[superscript 2] and water vapor may have played an important role in intermittently stabilizing liquid water at higher latitudes following major volcanic eruptions or impact events.United States. National Aeronautics and Space Administration. Mars Fundamental Research Program (Grant MFRP05-0108)Ann and Gordon Getty Foundatio

    A chiral crystal in cold QCD matter at intermediate densities?

    Full text link
    The analogue of Overhauser (particle-hole) pairing in electronic systems (spin-density waves with non-zero total momentum QQ) is analyzed in finite-density QCD for 3 colors and 2 flavors, and compared to the color-superconducting BCS ground state (particle-particle pairing, QQ=0). The calculations are based on effective nonperturbative four-fermion interactions acting in both the scalar diquark as well as the scalar-isoscalar quark-hole ('σ\sigma') channel. Within the Nambu-Gorkov formalism we set up the coupled channel problem including multiple chiral density wave formation, and evaluate the resulting gaps and free energies. Employing medium-modified instanton-induced 't Hooft interactions, as applicable around μq0.4\mu_q\simeq 0.4 GeV (or 4 times nuclear saturation density), we find the 'chiral crystal phase' to be competitive with the color superconductor.Comment: 14 pages ReVTeX, including 11 ps-/eps-figure

    Attitude and Phase Synchronization of Formation Flying Spacecraft: Lagrangian Approach

    Get PDF
    This article presents a unified synchronization framework with application to precision formation flying spacecraft. Central to the proposed innovation, in applying synchroniza- tion to both translational and rotational dynamics in the Lagrangian form, is the use of the distributed stability and performance analysis tool, called contraction analysis that yields exact nonlinear stability proofs. The proposed decentralized tracking control law synchronizes the attitude of an arbitrary number of spacecraft into a common time-varying trajectory with global exponential convergence. Moreover, a decentralized translational tracking control law based on phase synchronization is presented, thus enabling coupled translational and rotational maneuvers. While the translational dynamics can be adequately controlled by linear control laws, the proposed method permits highly nonlinear systems with nonlinearly coupled inertia matrices such as the attitude dynamics of space-craft whose large and rapid slew maneuvers justify the nonlinear control approach. The proposed method integrates both the trajectory tracking and synchronization problems in a single control framework
    corecore