2,094 research outputs found
Talking quiescence: a rigorous theory that supports parallel composition, action hiding and determinisation
The notion of quiescence - the absence of outputs - is vital in both
behavioural modelling and testing theory. Although the need for quiescence was
already recognised in the 90s, it has only been treated as a second-class
citizen thus far. This paper moves quiescence into the foreground and
introduces the notion of quiescent transition systems (QTSs): an extension of
regular input-output transition systems (IOTSs) in which quiescence is
represented explicitly, via quiescent transitions. Four carefully crafted rules
on the use of quiescent transitions ensure that our QTSs naturally capture
quiescent behaviour.
We present the building blocks for a comprehensive theory on QTSs supporting
parallel composition, action hiding and determinisation. In particular, we
prove that these operations preserve all the aforementioned rules.
Additionally, we provide a way to transform existing IOTSs into QTSs, allowing
even IOTSs as input that already contain some quiescent transitions. As an
important application, we show how our QTS framework simplifies the fundamental
model-based testing theory formalised around ioco.Comment: In Proceedings MBT 2012, arXiv:1202.582
Real-Reward Testing for Probabilistic Processes (Extended Abstract)
We introduce a notion of real-valued reward testing for probabilistic
processes by extending the traditional nonnegative-reward testing with negative
rewards. In this richer testing framework, the may and must preorders turn out
to be inverses. We show that for convergent processes with finitely many states
and transitions, but not in the presence of divergence, the real-reward
must-testing preorder coincides with the nonnegative-reward must-testing
preorder. To prove this coincidence we characterise the usual resolution-based
testing in terms of the weak transitions of processes, without having to
involve policies, adversaries, schedulers, resolutions, or similar structures
that are external to the process under investigation. This requires
establishing the continuity of our function for calculating testing outcomes.Comment: In Proceedings QAPL 2011, arXiv:1107.074
Approximate reasoning for real-time probabilistic processes
We develop a pseudo-metric analogue of bisimulation for generalized
semi-Markov processes. The kernel of this pseudo-metric corresponds to
bisimulation; thus we have extended bisimulation for continuous-time
probabilistic processes to a much broader class of distributions than
exponential distributions. This pseudo-metric gives a useful handle on
approximate reasoning in the presence of numerical information -- such as
probabilities and time -- in the model. We give a fixed point characterization
of the pseudo-metric. This makes available coinductive reasoning principles for
reasoning about distances. We demonstrate that our approach is insensitive to
potentially ad hoc articulations of distance by showing that it is intrinsic to
an underlying uniformity. We provide a logical characterization of this
uniformity using a real-valued modal logic. We show that several quantitative
properties of interest are continuous with respect to the pseudo-metric. Thus,
if two processes are metrically close, then observable quantitative properties
of interest are indeed close.Comment: Preliminary version appeared in QEST 0
Computing Distances between Probabilistic Automata
We present relaxed notions of simulation and bisimulation on Probabilistic
Automata (PA), that allow some error epsilon. When epsilon is zero we retrieve
the usual notions of bisimulation and simulation on PAs. We give logical
characterisations of these notions by choosing suitable logics which differ
from the elementary ones, L with negation and L without negation, by the modal
operator. Using flow networks, we show how to compute the relations in PTIME.
This allows the definition of an efficiently computable non-discounted distance
between the states of a PA. A natural modification of this distance is
introduced, to obtain a discounted distance, which weakens the influence of
long term transitions. We compare our notions of distance to others previously
defined and illustrate our approach on various examples. We also show that our
distance is not expansive with respect to process algebra operators. Although L
without negation is a suitable logic to characterise epsilon-(bi)simulation on
deterministic PAs, it is not for general PAs; interestingly, we prove that it
does characterise weaker notions, called a priori epsilon-(bi)simulation, which
we prove to be NP-difficult to decide.Comment: In Proceedings QAPL 2011, arXiv:1107.074
An Algorithm for Probabilistic Alternating Simulation
In probabilistic game structures, probabilistic alternating simulation
(PA-simulation) relations preserve formulas defined in probabilistic
alternating-time temporal logic with respect to the behaviour of a subset of
players. We propose a partition based algorithm for computing the largest
PA-simulation, which is to our knowledge the first such algorithm that works in
polynomial time, by extending the generalised coarsest partition problem (GCPP)
in a game-based setting with mixed strategies. The algorithm has higher
complexities than those in the literature for non-probabilistic simulation and
probabilistic simulation without mixed actions, but slightly improves the
existing result for computing probabilistic simulation with respect to mixed
actions.Comment: We've fixed a problem in the SOFSEM'12 conference versio
Testing Reactive Probabilistic Processes
We define a testing equivalence in the spirit of De Nicola and Hennessy for
reactive probabilistic processes, i.e. for processes where the internal
nondeterminism is due to random behaviour. We characterize the testing
equivalence in terms of ready-traces. From the characterization it follows that
the equivalence is insensitive to the exact moment in time in which an internal
probabilistic choice occurs, which is inherent from the original testing
equivalence of De Nicola and Hennessy. We also show decidability of the testing
equivalence for finite systems for which the complete model may not be known
Timed Parity Games: Complexity and Robustness
We consider two-player games played in real time on game structures with
clocks where the objectives of players are described using parity conditions.
The games are \emph{concurrent} in that at each turn, both players
independently propose a time delay and an action, and the action with the
shorter delay is chosen. To prevent a player from winning by blocking time, we
restrict each player to play strategies that ensure that the player cannot be
responsible for causing a zeno run. First, we present an efficient reduction of
these games to \emph{turn-based} (i.e., not concurrent) \emph{finite-state}
(i.e., untimed) parity games. Our reduction improves the best known complexity
for solving timed parity games. Moreover, the rich class of algorithms for
classical parity games can now be applied to timed parity games. The states of
the resulting game are based on clock regions of the original game, and the
state space of the finite game is linear in the size of the region graph.
Second, we consider two restricted classes of strategies for the player that
represents the controller in a real-time synthesis problem, namely,
\emph{limit-robust} and \emph{bounded-robust} winning strategies. Using a
limit-robust winning strategy, the controller cannot choose an exact
real-valued time delay but must allow for some nonzero jitter in each of its
actions. If there is a given lower bound on the jitter, then the strategy is
bounded-robust winning. We show that exact strategies are more powerful than
limit-robust strategies, which are more powerful than bounded-robust winning
strategies for any bound. For both kinds of robust strategies, we present
efficient reductions to standard timed automaton games. These reductions
provide algorithms for the synthesis of robust real-time controllers
Using schedulers to test probabilistic distributed systems
This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s00165-012-0244-5. Copyright © 2012, British Computer Society.Formal methods are one of the most important approaches to increasing the confidence in the correctness of software systems. A formal specification can be used as an oracle in testing since one can determine whether an observed behaviour is allowed by the specification. This is an important feature of formal testing: behaviours of the system observed in testing are compared with the specification and ideally this comparison is automated. In this paper we study a formal testing framework to deal with systems that interact with their environment at physically distributed interfaces, called ports, and where choices between different possibilities are probabilistically quantified. Building on previous work, we introduce two families of schedulers to resolve nondeterministic choices among different actions of the system. The first type of schedulers, which we call global schedulers, resolves nondeterministic choices by representing the environment as a single global scheduler. The second type, which we call localised schedulers, models the environment as a set of schedulers with there being one scheduler for each port. We formally define the application of schedulers to systems and provide and study different implementation relations in this setting
An Event Structure Model for Probabilistic Concurrent Kleene Algebra
We give a new true-concurrent model for probabilistic concurrent Kleene
algebra. The model is based on probabilistic event structures, which combines
ideas from Katoen's work on probabilistic concurrency and Varacca's
probabilistic prime event structures. The event structures are compared with a
true-concurrent version of Segala's probabilistic simulation. Finally, the
algebraic properties of the model are summarised to the extent that they can be
used to derive techniques such as probabilistic rely/guarantee inference rules.Comment: Submitted and accepted for LPAR19 (2013
On coalgebras with internal moves
In the first part of the paper we recall the coalgebraic approach to handling
the so-called invisible transitions that appear in different state-based
systems semantics. We claim that these transitions are always part of the unit
of a certain monad. Hence, coalgebras with internal moves are exactly
coalgebras over a monadic type. The rest of the paper is devoted to supporting
our claim by studying two important behavioural equivalences for state-based
systems with internal moves, namely: weak bisimulation and trace semantics.
We continue our research on weak bisimulations for coalgebras over order
enriched monads. The key notions used in this paper and proposed by us in our
previous work are the notions of an order saturation monad and a saturator. A
saturator operator can be intuitively understood as a reflexive, transitive
closure operator. There are two approaches towards defining saturators for
coalgebras with internal moves. Here, we give necessary conditions for them to
yield the same notion of weak bisimulation.
Finally, we propose a definition of trace semantics for coalgebras with
silent moves via a uniform fixed point operator. We compare strong and weak
bisimilation together with trace semantics for coalgebras with internal steps.Comment: Article: 23 pages, Appendix: 3 page
- …
