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Abstract. Formal methods are one of the most important approaches to increasing the confidence in the
correctness of software systems. A formal specification can be used as an oracle in testing since one can
determine whether an observed behaviour is allowed by the specification. This is an important feature of
formal testing: behaviours of the system observed in testing are compared with the specification and ideally
this comparison is automated. In this paper we study a formal testing framework to deal with systems
that interact with their environment at physically distributed interfaces, called ports, and where choices
between different possibilities are probabilistically quantified. Building on previous work, we introduce two
families of schedulers to resolve nondeterministic choices among different actions of the system. The first
type of schedulers, which we call global schedulers, resolves nondeterministic choices by representing the
environment as a single global scheduler. The second type, which we call localised schedulers, models the
environment as a set of schedulers with there being one scheduler for each port. We formally define the
application of schedulers to systems and provide and study different implementation relations in this setting.
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1. Introduction

Carroll’s early work provided significant insights into the relationships between specifications and pro-
grams [Mor88, Mor90]. In the mid 1990s he became interested in the study of the effect of probabilities
in programming and specification languages. Therefore, he worked on the development of frameworks where
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probabilities play a fundamental role [MMS96, MMSS96]. Carroll continued working on probabilistic exten-
sions and, together with colleagues from three continents, this line crystallised into the definition of a new
formal testing semantics for probabilistic systems [DGH+07, DGHM08, DGHM09, DGHM11]. Despite there
being a myriad of papers on probabilistic testing [Chr90, LS91, YL92, Seg96, CDSY99, Núñ03, LNR06,
CSV07, HM09], this proposal was able to find a niche with Carroll and colleagues presenting a testing theory
for a probabilistic extension of CSP. In addition to the usual choice operators, internal and external, the
calculus includes a probabilistic (internal) choice. The initial proposal did not include a recursion operator
but a later paper [DGHM09] added it to the framework, and then infinite behaviours (in particular, divergent
ones) have to be explicitly considered. The semantic theory is a natural generalisation of the classical may
and must preorders. In addition to defining these preorders, the work includes alternative characterisations
both in terms of simulation relations and in terms of a modal logic. His work has therefore made a significant
contribution to specification languages and probabilistic models.

Testing [Mye04, AO08] is the main tool used in industrial environments to increase the confidence in
the correctness of software systems. Traditionally, testing has been a manual activity and it was usually
believed, with a few exceptions [Gau95], that to formalise the testing process was a hopeless task. However,
and possibly due to the influence of formal approaches to testing of hardware, in recent years there has
been growing interest in the area of Model Based Testing (MBT) [HBH08, HBB+09]. In MBT the system
under test (SUT) is tested on the basis of a model or specification: the model/specification is used to
drive both test generation and test execution. In addition, when testing against a formal specification it
is necessary to have an appropriate implementation relation, which states what observations regarding the
SUT are allowed by the specification. The standard relation when testing from an input output transition
systems is ioco [Tre08], but there are alternatives based on simulation relations [LV95]. Typically, work
in MBT considers models expressed as either finite state machines (FSMs) or labelled transition systems
(LTSs). While developers and testers might not find FSMs and LTSs to be particularly expressive, MBT tools
typically take a model or specification written in another language and map this to an FSM or LTS for test
generation and execution [GGSV02, Tre08]. MBT thus provides a connection between formal specification
languages and formal testing theory and the practical process of testing a piece of software. Since MBT is
often automated, it can also provide a strong business case for using formal descriptions. For example, MBT
was found to be significantly more cost effective than manual testing in a recent industrial study involving
hundreds of testers [GKSB11].

♣♣ Manuel:Remove the next two sentences? The reviewer said ”rewrite” and, actually, I
don’t think they add much.While MBT draws on formal testing theory and theory regarding specification
languages, it has to develop this to provide a connection with test execution. For example, in test execution
there is an asymmetry between input and output: the tester (or environment) controls the input while the
SUT controls the output. In addition to this,♣♣ Manuel:End of proposed remove in this paper we
consider the testing of systems that interact with their environment at a number of physically distributed
interfaces and where the observations are thus distributed. ♣♣ Manuel:Sentence slightly rewritten
to satisfy reviewer In order to test these systems it is necessary to place a separate tester at each port.
Therefore, each single tester observes a local trace, which is a projection of the global trace that occurred. For
such systems, the observation made during testing is thus a set of local traces rather than a single (global)
trace. While this situation has been studied for some years for testing from FSMs or LTSs [SB84, DB85,
DB86, BU91, LDB93, CR99, UW03, RC03, HU08], only recently has testing from probabilistic models been
considered with our earlier work [HN10] providing a formal testing framework to deal with this type of
systems. This first approach considered only a restricted class of probabilistic distributed systems because
nondeterminism and probabilities are often difficult to combine. In order to solve this problem, schedulers
can be used to resolve nondeterministic choices, so that the resulting systems are fully probabilistic. The
development of such an approach is the main goal of this paper. The work complements that of Carroll and
others, who developed specification and modelling languages that have probabilistic choice and associated
results, by developing a theory that shows how a system can be tested to check that it conforms to a given
specification or model.

We are concerned with systems that interact with their environment at physically distributed ports. We
are thus interested in the nature of distributed observations and not the structure of the SUT. The SUT may
well be implemented as a distributed system but we consider it to be a black-box for the purposes of testing,
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with this being a normal scenario in system testing1. Recent work has looked at the use of schedulers for
distributed systems [GD09]. However, this work was concerned with the global behaviour of a system that
has separate components and thus investigates different issues: they were interested in the global behaviour
of a model comprised of a set of components while we are interested in the distributed external observations
that might be made regarding a system.

Many systems interact with their environment at physically distributed ports. Examples of such systems
include communications protocols, web-services, cloud systems and wireless sensor networks. Users perceive
these systems as black-boxes and user requirements are thus expressed at this level: users are not interested in
the internal structure of a system, only in whether it delivers the services they require. Probabilistic behaviour
can come from several sources. First, communications may be unreliable: the (internal or external) delivery
of a message may not be ensured. Second, the actual service provided by a system may depend on its current
demands, with a busy system providing poorer service. These demands may be external, relating to demands
placed on it by other users. The demands may also be internal, since there could be occasional internal
activities such as backing up or restructuring data. Finally, some systems are required to be probabilistic in
nature, an example being the parts of a communications protocol such as Ethernet that deal with collisions2.

Next we briefly explain our previous work, give more details about the problems that we confront in this
paper and mention some related work. Research on testing systems with physically distributed interfaces has
only recently considered models with probabilities [HN10], where two approaches to adding probabilities were
presented. First, we considered testing from labelled transition systems where there is a distinction between
actions performed at different locations. In this case, we applied a fully generative approach [GSS95]. Then
we considered systems where in addition to explicitly considering the location where actions were performed
we distinguished between inputs and outputs. In this framework a generative approach is not appropriate
and we used a combination of the reactive [LS91] and generative approaches. Our model is reactive for
inputs: given state s and input ?i, the sum of the probabilities of the transitions leaving s with input ?i
is 1. However, it is generative for outputs: given state s, the sum of the probabilities of the transitions
leaving s and labelled by an output is 1. Note that there are other approaches that are reactive for inputs
and generative for outputs [WSS97] or, even without explicitly distinguishing between inputs and outputs,
allowing both reactive and generative probabilistic choices between actions [AB00, BA03]. In the latter case,
the synchronisation in the context of the parallel operator must involve one reactive occurrence and one
generative occurrence of the same action. ♣♣ Manuel:null-semantics sentence added The interested
reader is referred to the original work [GSS95] for longer explanations on the appropriate use of the reactive
and generative models and to previous work [BA03] where the usefulness of a mixed reactive-generative
model is motivated.♣♣ Manuel:Full stop added

The implementation relations presented in our previous work [HN10] are conservative extensions of pre-
vious notions for the non-distributed and/or non-probabilistic framework. For example, if we have only one
port and we forget probabilistic information then our implementation relations are equivalent to trace inclu-
sion; if we consider empty sets of inputs then we obtain a natural (probabilistic) extension of trace inclusion
in a generative approach. ♣♣ Manuel:Full stop removed The main problem that we encountered was
to determine the probability of making particular observations. Interestingly, it transpires that this can be
problematic when we distinguish between inputs and outputs as a result of races. Specifically, observations
are not global traces of the system but equivalence classes of global traces that are indistinguishable when
there are independent agents/testers at the ports. There can be races between events at different ports and
where one or more of these events are inputs the reactive-generative setting does not provide probabilistic
information regarding the outcome of such races. As a result, we outlawed these types of races and provided
a condition under which such races cannot occur.

In this paper we extend our previous work to solve the aforementioned problem by considering schedulers,
also called adversaries in the literature of probabilistic systems. Schedulers are used to quantify the nonde-
terminism appearing in systems by modelling possible environments and this overcomes problems caused by
races since these races are resolved before probabilities are quantified. Schedulers have been used for a similar
purpose in systems combining probabilities and nondeterminism but, to the best of our knowledge, their use in
a testing framework of probabilistic systems with distributed interfaces is new. Our implementation relations

1 Most test techniques are either white-box, where they consider the structure of the code, or black-box. Typically, white-box
test techniques are only used for the testing of individual components.
2 In Ethernet, if two nodes have sent messages and these have collided then each node waits a random amount of time before
resending its message. Naturally, it would not be appropriate for the nodes to use a fixed amount of time.



4 Robert M. Hierons and Manuel Núñez

will depend on the traces that can be observed at different ports. Therefore, our methodology has some simi-
larities with work on semantic notions, in particular testing, for probabilistic automata [Seg95, SL95, Seg96].
The connection with this work can also be established at the modelling level: our mixed reactive-generative
interpretation of probabilities can be somehow simulated with the combination of a reactive interpretation
of probabilities and the addition of mixed choices, that is, a choice between a visible action and a τ invisible
one, to relate reactive and generative choices. However, the assumption of distributed ports, the distinction
between inputs and outputs and the use of schedulers is not considered in that work. Some of the ideas ap-
pearing in this paper are similar to those found in previous work [CLSV06] but we use a different formalism
(a unique system with distributed ports versus the parallel composition of different systems) and the main
goal of our research is different (we concentrate on implementation relations). Concerning the purpose of
schedulers, their use extends our previous work by allowing an additional degree of nondeterminism in which
we do not have to forbid races between events at different ports.

The rest of the paper is structured as follows. Section 2 gives preliminary definitions regarding observa-
tions that can be made in distributed testing. Section 3 presents a basic implementation relation for fully
probabilistic systems that will be used throughout the paper. Section 4 reviews our previous work on testing
probabilistic distributed processes with a distinction between inputs and outputs and gives an implementa-
tion relation between restricted systems, that is, systems where pathological races are forbidden. Section 5
presents our first notion of schedulers. A global scheduler represents a single global agent that provides the
environment for the SUT to resolve possibly conflicting situations. We define the application of a global
scheduler to a process and consider two scenarios to introduce implementation relations: requiring that the
composition of a scheduler and the specification be equivalent to the application of the same scheduler to the
SUT (what we call a strong relation) and allowing the SUT to choose a different scheduler to simulate the
composition of the specification and the original scheduler. Section 6 considers a local notion of schedulers:
the environment is represented by a set of schedulers with there being one scheduler for each port of the
SUT. We define new implementation relations, study their properties, and relate them to the previously
defined relations. Finally, Section 7 draws conclusions and discusses future work.

2. Preliminaries

Throughout this paper we assume that there are m observation ports and we identify these using the integers
in O = {1, . . . ,m}. If Act denotes the set of actions then for all o ∈ O, Acto denotes the set of actions that can
be observed at o. As usual, we assume that it is possible to observe the system being in a stable (quiescent)
state, this observation being denoted δ. We will include δ in Act. Quiescence can be observed at all ports and
so δ ∈ Acto for all o ∈ O.♣♣ Manuel:sentence added In the next two sections we will elaborate on the
use of quiescence in our formalisms but the interested reader is referred to previous work where quiescence
is analysed in a formal testing context [Seg97].

When a system interacts with its environment it does so through a sequence of actions in Act called
a global trace. ♣♣ Manuel:sentence added We denote by Act∗ the set of global traces and by Actn,
with n ∈ IN, the set of global traces with length equal to n. Given a global trace σ ∈ Act∗ we can define
the projection πo(σ) of σ onto port o, and this is called a local trace, in the following way (ǫ represents the
empty sequence):

1. πo(ǫ) = ǫ.

2. If z ∈ Acto then πo(zσ) = zπo(σ).

3. If z 6∈ Acto then πo(zσ) = πo(σ).

Let us consider, for example, a global trace a1b2c1 in which a1 and c1 are at port 1 and b2 is at port 2.
Then π1(a1b2c1) = a1c1 and π2(a1b2c1) = b2.

As stated above, we assume that δ is the only action that can be observed at more than one port. We
assume that the Acto \ {δ} are pairwise disjoint, adding labels to events if necessary. Given global traces
σ, σ′ ∈ Act∗ we write σ ∼ σ′ if σ and σ′ cannot be distinguished when only observing the local traces, that
is, σ ∼ σ′ if for all o ∈ O we have that πo(σ) = πo(σ

′). For example, a1b2c1 ∼ b2a1c1 since π1(a1b2c1) =
a1c1 = π1(b2a1c1) and π2(a1b2c1) = b2 = π2(b2a1c1).

The relation ∼ is an equivalence relation. Given global trace σ we let [σ] denote the equivalence class of
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σ with respect to ∼: the set of global traces indistinguishable from σ when only observing local traces. Thus,

[σ] = {σ′ ∈ Act∗|∀o ∈ O : πo(σ
′) = πo(σ)}

In this paper the set (0, 1] denotes all non-zero probabilities; all real numbers that are greater than 0
and no larger than 1. In addition, [0, 1] = {0} ∪ (0, 1]. In general, we use multisets of probabilities, instead
of sets, since the same probability can be associated with different transitions whose probabilities we are
considering. We use {| and |} as the delimiters for multisets.

The next two tables summarise the main concepts that we will use in this paper. The first table describes
definitions of systems and notions while the second table gives an intuitive description, although not as
precise as the actual definition, of the different implementation relations that we use in the paper. As we
said before, an implementation relation defines when an SUT is correct with respect to a specification. At
the end of the paper, in Figure 7, we compare the implementation relations described in the paper.

Types of systems
Notation Definition Explanation
PLTS Def. 1 Labelled transition systems with a unique probability distribution for all

the actions departing a given state.
PIOTS Def. 6 Labelled transition systems with a distinction between reactive inputs (a

probability distribution for each of the inputs departing a given state) and
generative outputs (a unique probability distribution for all the outputs
departing a given state).

Main notions and concepts
∼ Sec. 2 Relation between traces: two traces are related if all their local projections

are equal.
[σ] Sec. 2 Contains all the traces that are equivalent to σ with respect to ∼.
prob Def. 2, 3

and 9
This function is overloaded. Given a sequence of actions, it computes the
probability of performing the sequence from a state of a PLTS (Definition 2),
or all the traces belonging to the equivalence class of the sequence from a
state of a PLTS or a PIOTS (Definitions 3 and 9, respectively).

consistent
PIOTS

Def. 8 PIOTS not having races between an input and events at other ports.

global
scheduler

Def. 10 System that resolves non-determinism in PIOTSs: when applied to a PIOTS
returns a PLTS.

localised
scheduler

Def. 16 Same purpose as global schedulers but instead of a unique system, they are
defined as a set of systems, one per each port. They are applied only to
consistent PIOTSs.
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Implementation relations
Notation Definition Explanation
r ≡G

old s Def. 4 A PLTS r is correct with respect to another PLTS s if for all trace σ of s both
processes return the same probability for [σ].

r ⊑G s Def. 5 Similar to ≡G
old but considering only traces that end in quiescence.

r ≡G s Def. 5 When restricted to a finitary class of processes the previous relation is an
equivalence.

r ⊑ s Def. 9 Adaption of ⊑G to deal with consistent PIOTSs.
r ≡s

g s Def. 13 A PIOTS r is correct with respect to another PIOTS s if for all global sched-
uler, its application to each of the processes return PLTSs that are equivalent
under ≡G. If we apply a scheduler to the SUT then the same scheduler must
provide an equivalent process when applied to the specification.

r ⊑w
g s Def. 14 A PIOTS r is correct with respect to another PIOTS s if for all global sched-

uler Gr there exists a global scheduler Gs such that the application of Gr to r
and the application of Gs to s return PLTSs that are equivalent under ≡G. If
we apply a scheduler to the SUT then the specification can choose a (possibly
different) scheduler to find an equivalent process.

r ≡s
l s Def. 17 Similar to ≡s

g but for localised schedulers applied to consistent PIOTSs.
r ⊑w

l s Def. 17 Similar to ⊑w
g but for localised schedulers applied to consistent PIOTSs.

3. Implementation relations for probabilistic labelled transition systems

In this section we introduce a new implementation relation for probabilistic labelled transition systems with
distributed ports. In Section 4 we extend this to models in which we distinguish between input and output.
First we define the type of models we consider.

Definition 1 A probabilistic labelled transition system (PLTS) s is defined by a tuple (Q,Act, T, qin) in
which Q is a countable set of states, qin ∈ Q is the initial state, Act is a countable set of actions, and
T ⊆ Q × Act × Q × (0, 1] is the transition relation. A transition (q, a, q′, p) means that when in state q,
with probability p the next event moves s to state q′ with action a ∈ Act. We cannot have two transitions
(q, a, q′, p) ∈ T and (q, a, q′, p′) ∈ T in which p 6= p′. We require that for every state q ∈ Q either

∑

{| p | ∃a, q′ :
(q, a, q′, p) ∈ T |} is equal to 1 or q is a deadlock state and so this sum is equal to zero. We extend the set
of transitions T to a new set Tδ by adding the transition (q, δ, q, 1) for each deadlock state q and we assume
that δ ∈ Act. For port o ∈ O we let Acto denote the set of actions that can be observed at o. Thus, for all
o ∈ O we have that δ ∈ Acto and also that Act1 \ {δ}, . . . ,Actm \ {δ} partition Act\ {δ}. We let PLTS(Act)
denote the set of PLTSs with action set Act.

Any state q ∈ Q defines a PLTS derived from s by setting the initial state to q, that is, abusing the
notation we consider q to be (Q,Act, T, q) with unreachable states (and corresponding transitions) removed.

We assume that PLTSs are connected: for each state q of the system there is a sequence of transitions
that reaches q from the initial state. In terms of the classification of probabilistic models [GSS95] we use a
generative interpretation of probabilities. That is, for each state of the system, the sum of the probabilities
associated with its outgoing transitions is 1 if δ self-loops are added to deadlocked states. Let us note
that all transitions have non-zero probability3. We also do not allow two different transitions (q, a, q′, p)
and (q, a, q′, p′): such a situation is equivalent to having a unique transition (q, a, q′, p+ p′). Finally, in the
graphical representations of systems we omit probabilities equal to 1. We now introduce notation for PLTSs.

Definition 2 Given a PLTS s = (Q,Act, T, qin), state q ∈ Q, and σ ∈ Act∗, we let prob(q, σ) denote the
probability of performing the sequence σ from state q. Formally,

prob(q, σ) =

{

1 if σ = ǫ

∑

{| p · prob(q′, σ′) | (q, a, q′, p) ∈ T |} if σ = aσ′

3 An alternative is to allow the probability of a transition to be from the set [0, 1] but we can simply delete any transition with
probability 0 since it does not affect the behaviour of the PLTS.
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We say that σ ∈ Act∗ is a trace of s if prob(qin, σ) > 0. We denote by L(s) the set of traces of s.

It is clear that prob does not induce a probability measure on the set of traces. Nevertheless, the following
result shows that prob is well-defined in the sense that given a fixed length n and a state q, prob induces a
probability measure on the set of traces having length equal to n and outgoing from q.

Proposition 1 Let s = (Q,Act, T, qin) be a PLTS. For all q ∈ Q and natural number n ∈ IN, consider the
function Pq,n : P(Actn) −→ [0, 1] defined as Pq,n(A) =

∑

σ∈A prob(q, σ). Then, (Actn,P(Actn), Pq,n) is a
probability space.

Proof. We need to prove that Pq,n is a probability measure. It is obvious that Pq,n(∅) = 0 and that Pq,n

satisfies countable additivity. It remains to prove, by induction on n, that Pq,n(Actn) = 1. The base case,

n = 0, is trivial since Pq,n(Act0) = Pq,n({ǫ}) = prob(q, ǫ) = 1. For the inductive case, assume that the

property holds for n − 1. We have that Pq,n(Actn) = Pq,n({aσ
′ | ∃p, q′ : (q, a, q′, p) ∈ T ∧ σ′ ∈ Actn−1}) =

∑

{| prob(q, aσ′) | ∃p, q′ : (q, a, q′, p) ∈ T∧σ′ ∈ Actn−1 |}, that is, it is enough to consider only traces beginning
with an action that can be performed from q. Grouping terms and applying the definition of prob we have
that the previous expression is equal to

∑

{| p · Pq′,n−1(Actn−1) | ∃p, q′ : (q, a, q′, p) ∈ T |}. By the inductive

hypothesis, for all state q′ we have that Pq′,n−1(Actn−1) = 1 and taking into account that by the definition
of PLTS, extended with δ transitions, the addition of all the probabilities labelling transitions departing each
state of the system is equal to 1 we finally conclude that Pq,n(Actn) = 1.

In distributed testing we cannot distinguish between sequences that are equivalent under∼.♣♣ Manuel:rewritten
as suggested Thus, rather than use the probability of traces we consider the probability of equivalence
classes of traces. Note that the term prob is overloaded.

Definition 3 Let s = (Q,Act, T, qin) be a PLTS and σ ∈ Act∗. We define the probability with which s
performs the equivalence class [σ], denoted by prob(s, [σ]), as

∑

{| prob(qin, σ
′) |σ′ ∈ [σ] |}

Previously we defined an implementation relation, that we will call ≡G
old, in the following way [HN10].

Definition 4 Let s, r be PLTSs. We write r ≡G
old s if for all σ ∈ L(s) we have that prob(s, [σ]) = prob(r, [σ]).

This relation is an equivalence relation [HN10] and so the following result is clear.

Proposition 2 Let s, r be PLTSs with action set Act. We have r ≡G
old s if for all σ ∈ Act∗ we have that

prob(s, [σ]) = prob(r, [σ]).

This previously defined implementation relation allows us to distinguish between processes r and s such
that r can do a1a2 and then deadlock (a1 and a2 are at different ports) and s can do a2a1 and then deadlock.
All probabilities are 1 and r and s are not related under ≡G

old since, for example, r can do a1, and therefore
prob(r, [a1]) = 1 while s cannot, and therefore prob(s, [a1]) = 0. However, as explained earlier, in distributed
testing we can only bring together the observations at the separate ports when the system is quiescent since
we need to know that the local traces observed are projections of the same global trace. As a result, often we
will not be able to distinguish between processes such as r and s. ♣♣ Manuel:I have slightly changed
and (strongly) reduced your paragraph: please check Alternative approaches consist in synchronising
the actions of the testers through the exchange of coordination messages [CR99, RC03, Hie12] or in having
the individual testers exchanging messages with a central coordinator that records the global order of events
and determines when an individual tester should send an input [JJKV98]. While these approaches can be
extremely useful, they can complicate testing and are not always appropriate. Among the problems of these
solutions we can mention that the time that it takes for the coordination messages to be received can distort
the global order of events, that an implementation relation that implicitly assumes coordination messages
might consider an SUT to be faulty even though it will appear to be correct in use, and that coordination
messages are often sent using a network shared with the SUT and this might disturb the performance of the
system.
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If we restrict observations to traces that end in quiescent states then we obtain the following new imple-
mentation relation that we use in this paper.

Definition 5 Let s, r be PLTSs with the same set Act of actions. We write r ⊑G s if for every σ ∈ Act∗

such that σδ is a trace of s, we have that prob(s, [σδ]) = prob(r, [σδ]).

It is straightforward to see that if L(r) and L(s) are finite then we have that r ⊑G s if and only if
s ⊑G r and later (Proposition 3) we prove a slightly stronger result. When we use ⊑G with this type of
finitary processes we will sometimes use the symbol ≡G to make it clear that it is an equivalence relation.
♣♣ Manuel:sentences added Note that this property does not hold if the processes have infinite sets
of traces. For example, let s be a PLTS with a unique state and a self-loop transition labelled by an action
a with probability 1. It is obvious that for all PLTS r we have r ⊑G s, since r does not have traces ending
with quiescence, but the reverse relation, that is, s ⊑G r, does not necessarily hold.

4. Probabilistic Input Output Transition Systems

Many systems interact with their environment through inputs and outputs and we now consider such systems
and the observations that can be made. There is often an asymmetry between input and output since the
environment controls the inputs while the system controls the outputs and this has led to the use of input
output transition systems (IOTSs), which are LTSs where we distinguish between input and output. We
now define a probabilistic IOTS that has multiple ports. In contrast to the purely generative model used
in the previous section, we use the reactive scenario for inputs and the generative for outputs. We have a
reactive scenario for inputs since the environment controls these but we still have a generative scenario for
outputs since the SUT controls these. We attach probabilities to inputs since there may be more than one
transition leaving a state q with a given input ?i: the environment chooses the input to supply but the system
determines which transition to take.

Definition 6 A probabilistic input-output transition system (PIOTS) s = (Q, In, Out, T, qin) is a tuple in
which Q is a countable set of states, qin ∈ Q is the initial state, In is a countable set of inputs, Out is
a countable set of outputs, and T ⊆ Q × (In ∪ Out) × Q × (0, 1] is the transition relation. A transition
(q, a, q′, p) means that from state q it is possible to move to state q′ with action a ∈ In∪ Out with probability
p. Again, we cannot have two transitions (q, a, q′, p) ∈ T and (q, a, q′, p′) ∈ T in which p 6= p′. If a ∈ Out

then we should interpret the probability p of (q, a, q′, p) as meaning that if an output occurs in state q before
input is provided then with probability p this transition occurs. Therefore, for every state q we must have
that

∑

{| p | ∃q′, a : (q, a, q′, p) ∈ T ∧ a ∈ Out |} is either 1 or 0 (if the state cannot produce any output).
Further, if a ∈ In then we must have that the sum of the probabilities of transitions leaving q with input a,
that is

∑

{| p | ∃q′ : (q, a, q′, p) ∈ T |}, is either 1 or 0 (if the input is not available at that state). This means
that once an available input a is chosen by the environment, we can forget the other available inputs and
concentrate on the probability distribution function governing the transitions labelled by a.

A state q ∈ Q is quiescent if there is no outgoing transition from q labelled by an output. We can extend
the set of transitions T to a new set Tδ by adding the transition (q, δ, q, 1) for each quiescent state q. We let
Act = In ∪ Out ∪ {δ} denote the set of actions.

We partition the set In of inputs into In1, . . . , Inm in which for port o ∈ O we have that Ino is the set of
inputs that can be received at port o. Similarly, we partition the set Out of outputs into sets Out1, . . . , Outm.
We let PIOTS(In, Out) denote the set of PIOTSs with input set In and output set Out. Given port o we let
Acto = Ino ∪ Outo ∪ {δ} denote the set of events that can be observed at o.

We say that the process s is output-divergent if it can reach a state in which there is an infinite path
that contains outputs only. In this paper we only consider processes that are not output-divergent.

As with PLTSs, we assume that PIOTSs are connected. If we treat δ as a normal output, then the sum
of the probabilities associated with outputs from a state is always equal to 1, that is, for all q ∈ Q we have
∑

{| p | ∃q′, a : (q, a, q′, p) ∈ Tδ∧a 6∈ In |} = 1. As usual, we precede the name of an input by ? and we precede
the name of an output by !. We will often label inputs and outputs in order to make their port clear. For
example, ?i1 denotes an input at 1 and !o1 denotes an output at 1. An alternative [HMN08b] is to allow
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outputs to be tuples of values but the formalism used in this paper has the advantage of simplifying the
notation and analysis.

Traces are sequences of actions, possibly including quiescence, that are sometimes called suspension traces.
In this paper we call them global traces.

Definition 7 Given s = (Q, In, Out, T, qin) ∈ PIOTS(In, Out), we use the following notation.

1. If (q, a, q′, p) ∈ Tδ, for a ∈ Act, then we write q
a−−→ q′ and q

a−−→ .

2. We write q
σ

==⇒ q′ for σ = a1 . . . am ∈ Act∗ if there exist q0, . . . , qm, q = q0, q
′ = qm such that for all

0 ≤ i < m we have that qi
ai+1

−−−−→ qi+1.

3. If there exists q′ such that qin
σ

==⇒ q′ then we say that σ is a trace of s and we write s
σ

==⇒ . We let L(s)

denote the set of traces of s. A trace σ of s is said to be a quiescent trace if qin
σ

==⇒ q′ for a quiescent
state q′.

Note that we have initially abstracted probabilistic information in the definition of a trace. This infor-
mation will be incorporated when defining implementation relations.

In distributed testing we cannot distinguish between traces that are equivalent under ∼ and so it makes
sense to assign probabilities to equivalence classes of global traces. Consider a process that can do ?i1?i2
and terminate or can do ?i2?i1 and terminate. Each trace has associated probability 1 so if we sum the
probabilities of the traces in [?i1?i2] we obtain 2. This is because these traces are alternative outcomes of
a race but the model does not contain probabilistic information regarding this race. As a result, in order
to define an appropriate probabilistic extension of dioco [HMN08b, HMN08a, HMN12], an implementation
relation to deal with systems with distributed ports, a previous approach [HN10] restricted attention to a
class of systems without such pathological behaviours. Essentially, it did not consider systems with races
between an input at a port o and events at other ports. The problem was that, as seen above, these systems
do not induce a unique probability distribution function among its set of possible traces. Other work on
using IOTSs for distributed systems defined the mioco implementation relation where global observations
are made but there are multiple ports [BHT98]. This insists that if no transition is defined for input ?io ∈ Ino

in state q, then there are no transitions from q with input from Ino. This corresponds to the SUT being able
to block input at an interface. We made a similar assumption, which is that for any state q we cannot have
transitions from q for input at o ∈ O and also transitions with actions from other ports. This corresponds to a
design that avoids races between an input and events at other ports. Interestingly, work on Message Sequence
Charts [BAL97] has defined a pathology in which the next events after branching are on different processes:
our restriction is similar to outlawing this pathology. We considered consistent systems as introduced below.

Definition 8 A PIOTS (Q, In, Out, T, qin) is consistent if for every state q ∈ Q if there exist a1, a2 ∈

In ∪ Out such that q
a1−−→ and q

a2−−→ then either both of them are outputs or they are at the same port.

Next, we introduce our previously defined implementation relation to relate consistent systems [HN10].
The idea is that an implementation r is correct with respect to specification s if for all quiescent trace σ of
s we have that [σ] has the same probability in both systems.

Definition 9 Let s, r ∈ PIOTS(In, Out) be consistent. We write r ⊑ s if for every sequence σ such that

s
σδ

==⇒ , we have that prob(s, [σδ]) = prob(r, [σδ]).

This definition is an extension of Definition 5 to consider consistent PIOTSs while in the previous def-
inition we dealt with PLTS, the purely generative model without distinction between inputs and outputs.
Definition 9 included δ in the global traces to ensure that we are considering quiescent traces in each process.
As discussed earlier, we consider quiescent traces since quiescence allows the testers to know that they are
reporting projections of the same trace.

5. Global schedulers in the distributed architecture

In this section we show how schedulers can help us to deal with pathological processes since schedulers can
be used to resolve some of the nondeterministic choices that complicate the computation of the probability
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Fig. 1. Processes v1 and u1 that could be distinguished with a scheduler operating at the state level.

associated with (classes of) sequences. Essentially, schedulers will be used to model potential environments
for a process. This will allow us to define implementation relations for PIOTSs that are not consistent systems
and thus generalise our previous implementation relations. In a certain sense, the objective of a scheduler
is to transform a general reactive-generative process into a tractable process. Such schedulers fully quantify
the choices of the system to which they are applied by producing a generative process.

First we considered schedulers that operate at the state level. The idea is that the next allowed action
depends upon the current state of the process. These schedulers indicate, for each state q of the original
PIOTS, whether we are choosing a specific port to both receive inputs and produce outputs or we are
interested only in producing outputs. In the first case, probabilities have to be normalised to remove the
weight previously assigned to outputs that will be discarded. The application of such a scheduler to a PIOTS
would produce a consistent system, and processes could be compared with our original implementation
relation. However, consider processes u1 and v1 in Figure 1. Clearly, u1 and v1 should be considered to be
equivalent since we can form u1 from v1 by unfolding the self-loop transition in state v1 once. However, we
can form a scheduler for u1 in which we allow the transition from u1 with input ?i1 but not that from u′′ and
we cannot simulate this in v1 since there is only one transition with label ?i1. Therefore, while this notion
of schedulers is conceptually appealing using them can be problematic.

We consider an alternative in which the behaviour of the scheduler depends on the global trace that has
occurred. As a result, these schedulers are tree-like structures that indicate which actions can be performed
at each point of time. Specifically, these schedulers are tree-like IOTSs with restrictions on the transitions
departing from each state. The aim is for the composition of a scheduler with a process to be purely
generative: we can then compose schedulers with the implementation and specification processes and compare
the resultant generative processes using our new implementation relation ≡G.

In order to produce a generative process we require that a scheduler, when composed with a process,
either can provide an input or it can wait and observe an output: we cannot have a race between an input and
outputs. One option, to ensuring this, is to allow the scheduler to block output from the process. However,
this does not fit too well with testing since often the environment cannot block output. In addition, if the
schedulers can block output then they can distinguish between traces such as !o1!o2 and !o2!o1, by blocking
the second output, despite such traces being observationally equivalent in the distributed setting.

Instead of assuming that a scheduler can block output we assume that if an input is supplied then this
is received before output is produced: if a process can produce output and the scheduler intends to send an
input then the input wins the race. This assumption is less restrictive than requiring a scheduler to be able
to block output: if a scheduler can block output then it can satisfy the requirement that an input will be
received before output is produced by blocking all output whenever it is ready to supply input.

We now define (global) schedulers and then define the composition rules, for a process and a scheduler,
that ensure that input is received before output is sent. In order to ensure that schedulers have a finite
interaction with a process, and given that they have a tree-like structure, we only need to ask that their sets
of states are finite. In particular, each trace generated by the application of a scheduler to a system will have a
finite number of inputs, a property used in previous work on dioco to avoid pathological behaviours [HMN12].

Definition 10 Let In and Out be sets of inputs and outputs, respectively, and O be a set of ports. A global
scheduler for In and Out is a tuple G = (Q′, In, Out, T ′, q′in) such that Q′ is a finite set of states, with
q′in ∈ Q′ its initial state, and T ′ ⊆ Q′ ×Act×Q′ is its transition relation that satisfies the following:
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• The graph having vertex set Q′ and edges set T ′ is a tree with the exception of its leaves, which will have
self-loop transitions labelled by outputs and δ.

• For all q ∈ Q′, one of the following possibilities holds:

– There exists at most one a ∈ In and q′ 6= q such that (q, a, q′) ∈ T ′ and for all b ∈ Out ∪ {δ}, there
exists a unique qb ∈ Q′, qb 6= q, such that (q, b, qb) ∈ T ′ and all the states qb and q′ are pairwise
different. These are the only transitions leaving q.

– The only outgoing transitions are self-loops labelled by each action belonging to Out∪{δ}. In this case
we say that the state is terminal.

The language of G contains all the (finite) traces that can be performed by the scheduler. Overloading the

notation used to define the traces of a PIOTS we have L(G) = {σ ∈ (In∪Out∪{δ})∗|∃q′ ∈ Q′ : q′in
σ

==⇒ q′}.

Intuitively, after a trace is observed a scheduler can choose to supply an input and possibly observe
output if the process cannot receive this input. Alternatively, it can choose to simply wait and observe an
output or quiescence. In the next definition we introduce a construction to generate a global scheduler from a
trace; this construction will be used in several proofs. The idea is that this trace is the spine of the produced
global scheduler.

Definition 11 Let In and Out be sets of inputs and outputs, respectively, O be a set of ports, and σ ∈ Act∗.
The global scheduler generated by σ, denoted by SG(σ), is a global scheduler G = (Q, In, Out, T, qin) such
that (Q, T ) are inductively constructed from the initial call SG′(σ, qin, {qin}, ∅), as follows:

SG′(σaux, q, Qaux, Taux) =

{

(Qaux, Taux ∪ {(q, a, q)|a ∈ Out ∪ {δ}}) if σaux = ǫ

SG′(σ′

aux, q
′, Q1, T1) if σaux = xσ′

aux ∧ x ∈ Act

where the state q′ is fresh and Q1 and T1 are defined as follows:

Q1 = Qaux ∪ {q′} ∪ {qa|a ∈ (Out ∪ {δ})\{x}} (states qa are fresh)

T1 = Taux ∪ {(q, x, q′)} ∪ {(q, a, qa)|a ∈ (Out ∪ {δ})\{x}} ∪ {(qa, y, qa)|a ∈ (Out ∪ {δ})\{x}, y ∈ Out ∪ {δ}}

Next we define the application of a global scheduler to a system.

Definition 12 Let s = (Q, In, Out, T, qin) be a PIOTS with a set of ports O and G = (Q′, In, Out, T ′, q′in)
be a global scheduler for In and Out. We define the application of G to s, denoted s ‖ G, as the PLTS
s′ = (Q′′,Act, T ′′, (qin, q

′

in)) such that Q′′ ⊆ Q×Q′ is the set of states reachable from the initial state under
the set of transitions T ′′. We have that ((q1, q

′

1), a, (q2, q
′

2), p) ∈ T ′′ if and only if one of the following holds.

1. a ∈ In, (q1, a, q2, p) ∈ T and (q′1, a, q
′

2) ∈ T ′.

2. a ∈ Out ∪ {δ}, (q1, a, q2, p) ∈ T , (q′1, a, q
′

2) ∈ T ′ and there is no input ?i ∈ In, q3, q
′

3, and p′ such that
(q1, ?i, q3, p

′) ∈ T and (q′1, ?i, q
′

3) ∈ T ′.

Of the two cases in the definition, the first simply represents the case where the environment and the
SUT interact via an input being sent by the environment and the SUT being ready to receive this. The
second is the case where the SUT is in a state where it can produce an output: as explained above, this only
happens if the environment is not ready to send an input since in such situations the input wins the race.

♣♣ Manuel:Here we said that we obtain a PLTS but after Prop 3 we said that it was not
exactly a PLTS! I have merged both paragraphs. Please check. It is straightforward to check that the
application of global schedulers to PIOTSs produces processes similar to PLTSs but with the particularity
that δ can be followed by observations other than δ. However, as with dioco, the tester (or environment) can
choose to stop testing in a quiescent state and so the possible observations are projections of quiescent traces.
Further, since we consider PIOTSs that are not output-divergent, the composition of a global scheduler and
a process defines a PLTS with only finitely many traces that do not end in δ. ♣♣ Manuel:”The” added
The implementation relation ≡G is therefore suitable. The next result makes use of this property to show
that the application of global schedulers to processes keeps the symmetry of the ⊑G relation.

Proposition 3 Let us suppose that r, s ∈ PIOTS(In, Out) and Gr and Gs are global schedulers for In and
Out. Then we have that r ‖ Gr ⊑G s ‖ Gs if and only if s ‖ Gs ⊑G r ‖ Gr.



12 Robert M. Hierons and Manuel Núñez

Proof. We will assume that r ‖ Gr ⊑G s ‖ Gs and are required to prove that for every σ such that σδ is
a trace of r we have that prob(r ‖ Gr, [σδ]) = prob(s ‖ Gs, [σδ]). Define sets X1 and X2 of traces that do
not end in δ such that L(s ‖ Gs) is the set of prefixes of X1{δ}∗ and L(r ‖ Gr) is the set of prefixes of
X2{δ}∗. Since schedulers only apply finitely many inputs and processes are not output-divergent, X1 and
X2 are finite. Let [σ1], . . . , [σn] be the equivalence classes of maximal traces in X2 and let [σ′

1], . . . , [σ
′

m] be
the equivalence classes of the maximal traces in X1.

Since r ‖ Gr ⊑G s ‖ Gs, for all 1 ≤ i ≤ m and k ≥ 1 we have that prob(r ‖ Gr, [σ
′

iδ
k]) = prob(s ‖ Gs, [σ

′

iδ
k])

and so {[σ′

1], . . . , [σ
′

m]} ⊆ {[σ1], . . . , [σn]}. But,
∑n

i=1
prob(r ‖ Gr, [σi]) = 1 and

∑m

i=1
prob(s, [σ′

i]) = 1
so {[σ′

1], . . . , [σ
′

m]} = {[σ1], . . . , [σn]}. Thus, if σδ is a prefix of a sequence in X2 then prob(r ‖ Gr, [σδ]) =
prob(s, [σδ]) as required. The result now follows from observing that for all σi and k ≥ 0, prob(r ‖ Gr, [σiδ

k]) =
prob(r, [σiδ]) and prob(s ‖ Gs, [σiδ

k]) = prob(s, [σiδ]).

We now define implementation relations using schedulers and ≡G. The following requires that for any
choice of scheduler, we must have that the PLTSs that result from combining the scheduler with the imple-
mentation and specification PIOTSs are related under ≡G.

Definition 13 Given s, r ∈ PIOTS(In, Out), we write r ≡s
g s if for all G, global scheduler for In and Out,

we have r ‖ G ≡G s ‖ G.

♣♣ Manuel:”The” added The relation ≡s
g requires that we compare the PLTSs produced when

composing r and s with the same scheduler and to check this we effectively have to know how the environment
behaves. However, this may be difficult especially when we have systems with physically distributed ports.
We obtain a different implementation relation when the environment need not be known: all we can check is
that for the given environment/global scheduler, the implementation behaves in a manner that is consistent
with the specification for some (possibly different) environment/global scheduler. This provides the following
‘weak’ implementation relation, in contrast to the previous ‘strong’ implementation relation.

Definition 14 Given s, r ∈ PIOTS(In, Out), we write r ⊑w
g s if for all Gr, global scheduler for In and Out,

there exists Gs, global scheduler for In and Out, such that r ‖ Gr ≡G s ‖ Gs.

The two alternative implementation relations, weak and strong, represent extremes. In the strong case
we allow the possibility that the global behaviour of the environment is known. Typically, this is not feasible
in a distributed environment but this implementation relation is ‘safe’ in situations in which there can be
some knowledge regarding the global environment. For example, the outcome of what appears to be a race
involving inputs sent to different ports may be known due to interactions between the agents at these ports.
In contrast, the weak form represents the case where we know nothing about the environment. Thus, the
choice of which implementation relation to use depends upon the context in which the SUT will be used
and whether information regarding the global environment is available to users: if some such information is
available then the ≡s

g should be used but otherwise the weaker relation, ⊑w
g , can be used. Unlike ≡s

g, ⊑
w
g is

not an equivalence relation.

Proposition 4 There exist r, s ∈ PIOTS(In, Out) such that r ⊑w
g s but s does not conform to r under ⊑w

g .

Proof. Consider the processes s = v2 and r = u2 shown in Figure 2. First we show that r ⊑w
g s. There are

only two types of global schedulers to consider for r: one that sends input ?i1 after !o1!o2 and one that does
not. In the first case we use a global scheduler Gs that sends input ?i1 after both !o1!o2 and !o2!o1 and in the
second case we use a global scheduler Gs that does not send input. Thus, we have that r ⊑w

g s as required.
To see that s does not conform to r under ⊑w

g it is sufficient to consider global scheduler Gs that sends
input ?i1 after !o1!o2 but not after !o2!o1. This gives probability 0.5 to [!o1!o2?i1!o1δ] in s ‖ Gs and clearly
there is no Gr that gives the same probability for [!o1!o2?i1!o1δ] when composed with r.

The next result follows immediately from the definition of a global scheduler.

Proposition 5 Given s, r ∈ PIOTS(In, Out) with empty sets of inputs, the following are equivalent state-
ments:

1. r ≡s
g s
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Fig. 2. Processes v2 and u2 where u2 ⊑w

g v2 holds but v2 ⊑w
g u2 does not.

2. r ⊑w
g s

3. r ⊑ s.

Proof. This follows from observing that since there are no inputs, there is only one possible global scheduler
and the application of this scheduler to a process simply observes outputs until the process with which it is
interacting reaches a quiescent state.

We can now compare the implementation relations. Since ⊑ is defined only for consistent processes, the
results will only refer to these. The following result is an immediate consequence of the definitions.

Proposition 6 Given s, r ∈ PIOTS(In, Out), if r ≡s
g s then we also have that r ⊑w

g s.

However, the converse is not the case and this shows that the new implementation relations for PIOTSs
differ even when we restrict attention to consistent processes.

Proposition 7 There are consistent r, s ∈ PIOTS(In, Out) such that r ⊑w
g s holds but r ≡s

g s does not. In
addition, there are consistent r, s ∈ PIOTS(In, Out) such that r ⊑w

g s and s ⊑w
g r hold but r ≡s

g s does not.

Proof. Consider processes r = u3 and s = v3 shown in Figure 3. There are two types of relevant schedulers
that can be applied to r: those that apply input ?i1 after !o2!o1 and those that do not. Given a scheduler Gr

of the first type, we can obtain the same probabilities for the equivalence classes in s by choosing a scheduler
that applies ?i1 after !o1!o2. Given a scheduler Gr of the second type, we can obtain the same probabilities
for the equivalence classes in s by choosing a scheduler that does not apply input. Therefore we have that
r ⊑w

g s. Similarly, s ⊑w
g r.

To see that r ≡s
g s does not hold it is sufficient to choose any scheduler G that applies ?i1 after !o1!o2 but

not after !o2!o1. We have that 0 = prob(r ‖ G, [!o1!o2?i1!o1δ]) 6= prob(s ‖ G, [!o1!o2?i1!o1δ]) = 0.5. The result
therefore holds.

The following shows that the stronger of the new implementation relations is at least as strong as ⊑
when considering consistent processes.

Proposition 8 Given consistent r, s ∈ PIOTS(In, Out), if r ≡s
g s holds then r ⊑ s also holds.

Proof. Assume that r ≡s
g s and we will prove that this implies that r ⊑ s. Since r ≡s

g s, we have that for all

Gr we have that r ‖ Gr ≡G s ‖ Gr. We assume that σ is a trace that can take s to a quiescent state and it is
sufficient to prove that prob(s, [σδ]) = prob(r, [σδ]).

If σ contains only outputs then we can choose a scheduler Gr that never applies input and we have that
prob(r ‖ Gr , [σδ]) = prob(r, [σδ]) and prob(s ‖ Gr, [σδ]) = prob(s, [σδ]) and so the result holds. We therefore
assume that σ contains at least one input.

Let σ′

1, . . . , σ
′

k denote the longest prefixes of sequences from [σ] that end in input. Further, let c1, . . . , ck
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Fig. 3. Processes v3 and u3 where u3 ⊑w
g v3 holds but u3 ≡s

g v3 does not.

be defined such that ci is the set of traces in [σ] that have prefix σ′

i. By definition, the ci partition [σ]. Given
σ′

i, we must have that prob(r ‖ SG(σ′

i), [σδ]) is the sum of the probabilities of traces from ci in r. Since
r ≡s

g s, we have that prob(r ‖ SG(σ′

i), [σδ]) = prob(s ‖ SG(σ′

i), [σδ]) for all 1 ≤ i ≤ k. Since the ci partition

[σ] we have that prob(r, [σδ]) =
∑k

i=1
prob(r ‖ SG(σ′

i), [σδ]) and prob(s, [σδ]) =
∑k

i=1
prob(s ‖ SG(σ′

i), [σδ])
and so prob(s, [σδ]) = prob(r, [σδ]) as required.

Further, the new implementation relation≡s
g can be strictly stronger than⊑ even if we♣♣ Manuel:slightly

modified consider the equivalence relation ⊑ ∩ ⊑−1.

Proposition 9 There are consistent r, s ∈ PIOTS(In, Out) such that r ⊑ s holds but r ≡s
g s does not. In

addition, there are consistent r, s ∈ PIOTS(In, Out) such that r ⊑ s and s ⊑ r hold but r ≡s
g s does not.

Proof. Again consider processes r = u3 and s = v3 shown in Figure 3. Clearly r and s are equivalent under
⊑ because !o1!o2 ∼!o2!o1. However, we saw in the proof of Proposition 7 that r ≡s

g s does not hold.

Interestingly, the weaker of the new implementation relations need not be as strong as ⊑ when considering
consistent processes.

Proposition 10 There are consistent r, s ∈ PIOTS(In, Out) such that r ⊑w
g s holds but r ⊑ s does not.

Proof. Consider processes r = u4 and s = v4 shown in Figure 4. We can observe that the quiescent traces
of r and s are all in the equivalence classes [!o1!o2!o1δ] and [!o1!o2?i1δ]. For r there is only one transition
with an input and so there are only two types of schedulers to consider: those that apply ?i1 after !o1!o2
and those that do not provide input. Clearly, if we have a scheduler Gr that does not apply input then we
obtain only one equivalence class, [!o1!o2!o1δ], for both r and s and in each case we have probability 1. We
can therefore use Gs = Gr. Now consider a scheduler Gr that applies ?i1 after !o1!o2. For r, both equivalence
classes have probability 0.5. We obtain the same probabilities for the equivalence classes if, with s, we use a
scheduler Gs that applies ?i1 after !o1!o2 but after no other sequences. Thus, we have that r ⊑w

g s.
It is now sufficient to observe that we have that 1 = prob(s, [!o1!o2?i1δ]) 6= prob(r, [!o1!o2?i1δ]) = 0.5 and

so we do not have that r ⊑ s.

In the proof of the above, in order to show that r ⊑w
g s we considered two types of schedulers and it might

seem that in both cases we used the same scheduler for r and s. This could suggest that r ≡s
g s, providing

a counterexample to Proposition 8. However, we can show that r ≡s
g s does not hold by using a scheduler G

that applies input ?i1 after both !o1!o2 and !o2!o1. Finally, we show that ⊑ is not stronger than ⊑w
g .

Proposition 11 There are consistent r, s ∈ PIOTS(In, Out) such that r ⊑ s holds but r ⊑w
g s does not.

Proof. Consider processes r = v2 and s = u2 shown in Figure 2. Clearly r and s are equivalent under ⊑
because !o1!o2 ∼!o2!o1. However, as we showed in the proof of Proposition 4, r ⊑w

g s does not hold.
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Fig. 4. Processes v4 and u4 where u4 ⊑w

g v4 holds but u4 ⊑ v4 does not.

Overall, for consistent processes r and s, we have that r ≡s
g s implies both that r ⊑ s and r ⊑w

g s but
the converse directions do not hold. In addition, implementation relations ⊑w

g and ⊑ are incomparable.

♣♣ Manuel:Paragraph rewritten by Rob Some of the above results might seem slightly surprising
since we introduce schedulers in order to be able to define implementation relations for processes that are
not consistent and so it seems natural to expect the implementation relations to be equivalent if we consider
consistent processes. However, the proofs of Propositions 9, 10, and 11 use schedulers that behave differently
after traces !o1!o2 and !o2!o1, despite these traces being observationally equivalent. Such schedulers can allow
us to distinguish processes that cannot be distinguished by schedulers that always behave in the same way
after any two traces σ and σ′ such that σ ∼ σ′. In some situations it may be reasonable to allow schedulers
to behave differently after such σ and σ′ since the environment might behave differently after observationally
equivalent traces. For example, we might have that ?i1 is sent after !o1 is observed and ?i2 is sent after !o2
is observed and the order in which !o1 and !o2 are produced determines the order in which the inputs are
received. In such a situation, the behaviour of the environment after !o1!o2 is different from the behaviour
after !o2!o1: in the first case it next supplies input ?i1 and in the second case it next supplies input ?i2.
However, there will be situations in which the environment will behave in the same way after any two traces
σ and σ′ with σ ∼ σ′. For such situations we will want to restrict the class of schedulers considered and in
the next section we show how this can be done.

6. Localised Schedulers

We have seen that a single global scheduler can be used to represent the environment of a system. However,
if a system has physically distributed ports then it might interact with separate agents at these interfaces.
Thus, in this section we consider an environment that contains a separate scheduler at each port.

The requirement that the agents at the separate interfaces are entirely independent might seem quite
strong and clearly, by restricting the environment in this way we will obtain weaker implementation relations.
However, the use of a weaker implementation relation has value, in providing a wider range of design choices,
and so is useful in situations in which the environment is expected to behave in this way. For example, the
system might interact with human users at its interfaces and it might be expected that these users will not
interact with one another during the process of interacting with the system. Many web based systems have
this property: each user has their own individual objective for using the system and this objective will not
explicitly relate to the objectives of other users. If it is not possible to be confident that the environment
will consist of separate independent agents then it may be safer to use an implementation relation based on
global schedulers.

We call an environment that consists of separate agents a localised scheduler, since it is composed of
independent distributed (local) schedulers.

Definition 15 Let In and Out be sets of inputs and outputs, respectively, and O = {1, . . . ,m} be a set of
ports such that the set In of inputs is partitioned into In1, . . . , Inm and the set Out of outputs is partitioned
into Out1, . . . , Outm. A localised scheduler G for In and Out is defined by a tuple (G1, . . . ,Gm) where each
Gi is a global scheduler with input set Ini and output set Outi. Given localised scheduler G = (G1, . . . ,Gm),
we call each Gi a local scheduler. The language of G contains all the (finite) traces that can be performed by
the scheduler. Therefore, L(G) = {σ ∈ Act∗|∀o ∈ O, ∃σo ∈ L(Go) : σo = πo(σ)}.
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Intuitively, at each point of time, a local scheduler of a localised scheduler can choose to supply an
input ?i at its port, observing output or quiescence if the process cannot receive ?i. Alternatively, it can
choose to wait and observe an output or quiescence. We apply localised schedulers to consistent PIOTSs since
otherwise the composition of s and G = (G1, . . . ,Gm) might be able to reach a point where more than one Gi

can supply input. G does not define the probabilities of these different inputs, since the local schedulers act
independently, and so we would obtain a race and would not be able to allocate associated probabilities.
Note that L(G) computes all the possible interleavings from different ports but since localised schedulers will
be appplied only to consistent PIOTSs we will have that some of the sequences belonging to L(G) will not
be useful, in particular, if they cannot be performed by the PIOTS where the scheduler is being applied.

Definition 16 Let s = (Q, In, Out, T, qin) be a consistent PIOTS with port set O = {1, . . . ,m} and partitions
of the sets of inputs and outputs into In1, . . . , Inm and Out1, . . . , Outm, respectively. Let G = (G1, . . . ,Gm)
be a localised scheduler for In and Out such that for each o ∈ O, we have Go = (Qo, Ino, Outo, To, q

o
in).

We define the application of G to s, denoted s ‖ G, as the PLTS (Q′,Act, T ′, (qin, q
1
in, . . . , q

m
in)) such that

Q′ ⊆ Q ×Q1 × · · · ×Qm is the set of states reachable from the initial state under the set of transitions T ′.
We have that ((q, q1, . . . , qm), a, (q′, q′1, . . . , q

′

m), p) ∈ T ′ if and only if one of the following holds.

1. a ∈ Ino, (q, a, q
′, p) ∈ T , (qo, a, q

′

o) ∈ To and for all o′ ∈ O, with o 6= o′, we have qo′ = q′o′ .

2. a ∈ Outo, (q, a, q
′, p) ∈ T , (qo, a, q

′

o) ∈ To, for all o′ ∈ O, with o 6= o′, we have qo′ = q′o′ , and there are no
o′ ∈ O, input ?i ∈ Ino′ , q

′′, q′′o′ , and p′ such that (q, ?i, q′′, p′) ∈ T and (qo′ , ?i, q
′′

o′) ∈ To′ .

3. a = δ, p = 1, (q, δ, q, 1) ∈ T , q′ = q, for all o ∈ O, (qo, δ, q
′

o) ∈ To, and there exist no port o ∈ O, input
?i ∈ Ino, q

′′, q′′o , and p′ such that (q, ?i, q′′, p′) ∈ T and (qo, ?i, q
′′

o ) ∈ To.

It is possible to define two new implementation relations similar to the ones introduced previously.

Definition 17 Given consistent s, r ∈ PIOTS(In, Out) we write r ≡s
l s if for all G, localised scheduler for

In and Out, we have r ‖ G ≡G s ‖ G. Further, we write r ⊑w
l s if for all Gr, localised scheduler for In and

Out, there exists Gs, localised scheduler for In and Out, such that r ‖ Gr ≡G s ‖ Gs.

The distinction between ≡s
l and ⊑w

l is similar to that for ≡s
g and ⊑w

g described earlier. First, it is easy
to see that ≡s

l can be weaker than ≡s
g.

Proposition 12 There are consistent PIOTSs s, r ∈ PIOTS(In, Out) such that r ≡s
l s holds but r ≡s

g s
does not.

Proof. Consider again processes r = u3 and s = v3 shown in Figure 3. We have previously shown, in the
proof of Proposition 7, that r ≡s

g s does not hold. However, it is not possible to find a localised scheduler
that distinguishes between these processes since a localised scheduler must behaved in the same way after
!o1!o2 and !o2!o1.

The following result will be useful in reasoning about relations ≡s
l and ⊑w

l .

Proposition 13 Let us suppose that for localised scheduler G we have that [σ] ∩ L(G) 6= ∅. Then for any
consistent process r we have that prob(r, [σ]) = prob(r ‖ G, [σ]).

Proof. We will assume that [σ]∩L(G) 6= ∅ for localised scheduler G = (G1, . . . ,Gm). Thus, there exists σ′ ∼ σ
such that σ′ ∈ L(G) and so πo(σ

′) ∈ L(Go) for all o ∈ O. Since σ′ ∼ σ, πo(σ) = πo(σ
′) and so for all o ∈ O

we have that πo(σ) ∈ L(Go).
Now consider some σ′ ∼ σ. Since for all o ∈ O we have that πo(σ

′) = πo(σ) and πo(σ) ∈ L(Go), if σ
′ is

a trace of r then r ‖ G can perform σ′ unless an input supplied by some Go beats an output from σ′ at a
port o′ 6= o in a race. However, since r is consistent this is not possible. Thus, if σ′ is a trace of r then it is
a trace of r ‖ G and it has the same probability in each. The result therefore holds.

Actually, we have that ≡s
l is strictly weaker than ≡s

g.

Proposition 14 Given consistent r, s ∈ PIOTS(I, O), if r ≡s
g s then r ≡s

l s.
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Fig. 5. Processes v5 and u5 where u5 ⊑w

l
v5 but not u5 ⊑ v5.

Proof. We assume that r ≡s
l s does not hold and so there is a localised scheduler G and σ, with s

σδ
==⇒ , such

that prob(r ‖ G, [σδ]) 6= prob(s ‖ G, [σδ]). It is sufficient to prove that r ≡s
g s does not hold.

We now consider two cases. First, if σ contains no input then we choose the global scheduler G′ = SG(σ)
that applies no input. By Proposition 13 we have that prob(r ‖ G′, [σδ]) = prob(r ‖ G, [σδ]) and prob(s ‖
G′, [σδ]) = prob(s ‖ G, [σδ]). Thus, since prob(r ‖ G, [σδ]) 6= prob(s ‖ G, [σδ]) we have that prob(r ‖ G′, [σδ]) 6=
prob(s ‖ G′, [σδ]) as required.

Now assume that σ contains one or more inputs. Let σ1, . . . , σk denote longest prefixes of elements of [σ]
that end in input. For 1 ≤ j ≤ k let cj denote the set of traces from [σ] that have σj as a prefix and so the
cj partition [σ]. Since prob(r ‖ G, [σδ]) 6= prob(s ‖ G, [σδ]), at least one of these probabilities is non-zero and
so we must have that [σ] ∩ L(G) 6= ∅. Thus, by Proposition 13, since prob(r ‖ G, [σδ]) 6= prob(s ‖ G, [σδ])
we have that prob(r, [σδ]) 6= prob(s, [σδ]). Thus, there exists 1 ≤ i ≤ k such that

∑

σ′∈ci
prob(r, σ′δ) 6=

∑

σ′∈ci
prob(s, σ′δ). Consider global scheduler G′ = SG(σi). Then prob(r ‖ G′, [σδ]) =

∑

σ′∈ci
prob(r, σ′δ)

and prob(s ‖ G′, [σδ]) =
∑

σ′∈ci
prob(s, σ′δ). Thus, prob(r ‖ G′, [σδ]) 6= prob(s ‖ G′, [σδ]) as required.

We now compare ≡s
l with ⊑; later we will show how ⊑w

l and ⊑ relate.

Proposition 15 Given consistent r, s ∈ PIOTS(In, Out), if r ≡s
l s then r ⊑ s. However, there exist

consistent r, s ∈ PIOTS(In, Out) such that r ⊑ s but r ≡s
l s does not hold.

Proof. First assume that r ≡s
l s and we will prove that r ⊑ s. Let σ be an arbitrary trace and it is sufficient to

prove that prob(r, [σδ]) = prob(s, [σδ]). We will define a localised scheduler G = (G1, . . . ,Gm) in the following
way: for all o ∈ O define Go = SG(πo(σ)). Since r ≡s

l s, we have that prob(r ‖ G, [σδ]) = prob(s ‖ G, [σδ]).
By construction we have that [σ]∩L(G) 6= ∅ and so by Proposition 13 we know that prob(r, [σδ]) = prob(r ‖
G, [σδ]) and prob(s, [σδ]) = prob(s ‖ G, [σδ]). Thus, prob(r, [σδ]) = prob(s, [σδ]) as required.

For the second part, consider s = u5 and r = v5 shown in Figure 5. It is straightforward to see that r ⊑ s
since the only traces that we have to consider are the traces of s. However, to see that r ≡s

l s does not hold
we can use a scheduler that applies input ?i1 after !o1.

We now compare ⊑w
g and ⊑w

l . Interestingly, even though using localised schedulers is a restriction, r ⊑w
g s

does not imply r ⊑w
l s, since we also place restrictions on the scheduler Gs that can be used.

Proposition 16 There are consistent r, s ∈ PIOTS(In, Out) such that r ⊑w
g s but we do not have that

r ⊑w
l s.

Proof. Consider the processes r = u6 and s = v6 shown in Figure 6. It is clear that we cannot distinguish
between these processes using a (global or localised) scheduler that does not apply input. For any global
scheduler Gr that applies input ?i1 after !o2!o1 we can choose the global scheduler Gs that applies input ?i1
after !o2!o1 but otherwise does not apply input. Clearly s ‖ Gs and r ‖ Gr give the same probabilities to the
possible traces and so r ⊑w

g s. To see that r does not conform to s under ⊑w
l we can choose a scheduler Gr in

which the local scheduler at port 2 does not apply input and the local scheduler at port 1 applies input ?i1
after !o1. This gives [!o2!o1?i1!o1] probability 0.5. Any localised scheduler Gs for s must behave in the same
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Fig. 6. Processes v6 and u6 where u6 ⊑w
g v6 holds but u6 ⊑w

l
v6 does not.

way after !o1!o2 and !o2!o1 and so must give [!o2!o1?i1!o1] probability 0 or 1. Thus, r does not conform to s
under ⊑w

l as required.

Proposition 17 There are consistent r, s ∈ PIOTS(In, Out) such that r ⊑w
l s but we do not have that

r ⊑w
g s.

Proof. Consider the processes r = v2 and s = u2 in Figure 2. In the proof of Proposition 4 we have already
seen that r ⊑w

g s does not hold. However, any localised scheduler Gr for r must behave in the same way after
!o1!o2 and !o2!o1 and so cannot distinguish between these processes.

Finally, ≡s
l and ⊑w

l are related in the way one would expect.

Proposition 18 Given consistent r, s ∈ PIOTS(In, Out), if r ≡s
l s then r ⊑w

l s but it is possible that
r ⊑w

l s and that r ≡s
l s does not hold.

Proof. The first part is immediate from the definition. For the second part, let r and s be u5 and v5 from
Figure 5 respectively. We have that r ⊑w

l s since for any localised scheduler Gr we simply use the localised
scheduler Gs for s that does not apply input: both r ‖ Gr and s ‖ Gs have only two traces ǫ and !o1, both
with probability 1. To see that r does not conform to s under ≡s

l it is sufficient to use a localised scheduler
G that applies input ?i1 after !o1.

To summarise, if we restrict attention to localised schedulers then, for consistent processes, the new
implementation relation ≡s

l is stronger than ⊑w
l and the implementation relation ⊑. In addition, we will see

that ⊑ and ⊑w
l are incomparable. We now compare the relations ⊑w

g and ≡s
l .

Proposition 19 Given consistent r, s ∈ PIOTS(In, Out), it is possible that r ≡s
l s and that r ⊑w

g s does
not hold and it is possible that r ⊑w

g s and that r ≡s
l s does not hold.

Proof. For the first part consider r = v2 and s = u2 shown in Figure 2. In the proof of Proposition 4 we have
already seen that r ⊑w

g s does not hold. However, no localised scheduler can distinguish these processes. The
proof of the second part is equivalent to the proof of the second part of Proposition 18.

Finally, we compare ⊑w
l to ⊑.

Proposition 20 Let us suppose that r, s ∈ PIOTS(In, Out) are consistent. We have that r ⊑ s does not
imply that r ⊑w

l s and r ⊑w
l s does not imply that r ⊑ s.

Proof. For the first part, consider r = v5 and s = u5 shown in Figure 5. Again, r ⊑ s since the only traces
that we have to consider are the traces of s. However, to see that r ⊑w

l s does not hold we can use a scheduler
Gr that applies input ?i1 after !o1.
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Property Corresponding results Property Corresponding results
≡s

g≺⊑w
g Propositions 6 and 7 ⊑w

g ⊖ ⊑ Propositions 10 and 11
≡s

g≺⊑ Propositions 8 and 9 ≡s
l≺⊑ Proposition 15

≡s
g≺≡s

l Propositions 12 and 14 ⊑w
g ⊖ ⊑w

l Propositions 16 and 17
≡s

l≺⊑w
l Proposition 18 ⊑w

g ⊖ ≡s
l Proposition 19

≡s
g≺⊑w

l ≡s
g≺≡s

l ∧ ≡s
l≺⊑w

l ⊑w
l ⊖ ⊑ Proposition 20

r ⊑w
l s

r ≡s
l s r ≡s

g s r ⊑w
g s

r ⊑ s

Fig. 7. Comparing the implementation relations.

We now show that r ⊑w
l s does not imply that r ⊑ s. Consider the processes r = u5 and s = v5 shown

in Figure 5. Clearly, we do not have that r ⊑ s since s contains the trace !o1?i1!o1 that is not in r. It is
therefore sufficient to show that r ⊑w

l s. However, for any localised scheduler Gr we have that r ‖ Gr has
only two traces: ǫ and !o1, both with probability 1. We obtain the same behaviour for s ‖ Gs if we choose Gs

so that it does not provide input. Thus, r ⊑w
l s as required.

Figure 7 summarises the relation between the different implementation relations presented in the paper,
where Corresponding Result either quotes a proposition or lists a sequence of results that allows us to conclude
that the corresponding property holds. In this table, given relations ⊑1 and ⊑2:

1. ⊑1≺⊑2 if r ⊑1 s implies r ⊑2 s and also r ⊑2 s does not imply r ⊑1 s.

2. ⊑1 ⊖ ⊑2 if r ⊑1 s does not imply r ⊑2 s and also r ⊑2 s does not imply r ⊑1 s.

Note that these results apply to consistent processes since some of the implementation relations are only
defined for such processes. In the same figure, we present a graphical representation of the results table.

7. Conclusions and Future Work

This paper has considered the situation in which we have a probabilistic model of the SUT, the SUT interacts
with its environment at physically distributed ports, and we place a separate tester at each port. The tester
at a port o only observes events that occur at o and, as a result, in testing we observe the set of local
projections of the global trace that occurred. This induces an equivalence relation ∼ on global traces: two
global traces are equivalent under ∼ if they have the same local projections.

Previous work explored distributed testing from a probabilistic input output transition system (PI-
OTS) [HN10]. Since we can only observe traces up to ∼, it was necessary to consider probabilities associated
with equivalence classes of global traces. This led to a problem: since we used a reactive-generative scheme
for PIOTSs, the addition of the probabilities of global traces in an equivalence class need not be meaningful.
As a result, the work only considered consistent processes in which it was not possible to have a transition
with input at port o from a state q if there was another transition from q involving an event at a port o′ 6= o.
This restriction allowed implementation relation ⊑ to be defined.

In this paper we used schedulers to represent possible environments for the SUT. Importantly, the com-
position of a PIOTS and a scheduler is a generative process and so the use of schedulers allowed us to
consider any PIOTSs. We defined two implementation relations for an SUT r and specification s: for the
stronger relation ≡s

g we required that for any choice of scheduler G we have that the composition of r and
G is indistinguishable from the composition of s and G. For the weaker implementation relation, ⊑w

g , we
relaxed this to consider the situation in which r interacts with an environment modelled by a scheduler Gr

but we cannot know Gr : for any choice of scheduler Gr there is a scheduler Gs (a possible environment) such
that the composition of r and Gr is indistinguishable from the composition of s and Gs. Clearly, we have
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that ≡s
g is strictly stronger than ⊑w

g . It transpired that if we restrict attention to consistent PIOTS then ≡s
g

is strictly stronger than both ⊑w
g and ⊑ and also that ⊑w

g and ⊑ are incomparable.
We observed that a global scheduler, representing the environment, might behave differently after two

traces σ and σ′ that are observationally equivalent. In some situations this might not be realistic and so
we investigated an approach to eliminate such possibilities: we defined a localised scheduler that contains
one scheduler for each port. This did not affect the relationships between the implementation relations
corresponding to ≡s

g, ⊑
w
g , and ⊑.

There are still several avenues for future work on the topic of distributed testing of probabilistic systems.
A first line that we would like to follow is to define a complete testing framework from a more algebraic point
of view. The work by Carroll and colleagues on the topic [DGH+07, DGHM08, DGHM09, DGHM11] is a very
valuable initial step, in particular, because the ideas underlying the definition of alternative characterisations
of the may and must preorders as simulation relations could be adapted to our framework.

If we consider global schedulers that behave as locally consistent ones, that is, such that the decision
to apply an input at a port o depends only on the observations at o, then it is easy to transform them
into equivalent localised schedulers. Consider, now, the problem of representing a localised scheduler using
a global scheduler. We might have a local scheduler at port 1 that starts by applying input ?i1 and a local
scheduler at port 2 that starts by applying input ?i2. In this situation there are two possible initial inputs, a
situation that we cannot model with our global schedulers. This is not problematic if we apply the localised
scheduler to a single consistent process, since there cannot be a race in the composition of the localised
scheduler and the process: the composition results in a generative process as required. However, when we
compare different consistent processes r and s, the compositions of r and s with a localised scheduler might
resolve these races in different ways and so we cannot replace such a localised scheduler by a global scheduler.
We believe that the use of probabilistic schedulers, which have probabilistic information regarding different
choices (supplying a particular input or waiting for outputs), can partially alleviate this problem. However,
the transition will not be automatic since probabilistic schedulers might require probabilistic information
that cannot be extracted from localised schedulers. Another possibility, that we would also like to explore,
is to adapt the notion of a scheduler that has been devised for model checking distributed systems [GD09].
We have explored two extremes: global schedulers and localised schedulers. An alternative would lie in the
middle of them: to use a set of local schedulers and one scheduler to indicate which component is active.
Looking for boundaries, our work on localised schedulers is restricted to consistent systems. This is a small
class of systems and it might be interesting to find bigger sets of PIOTSs where localised schedulers can be
still applied. In this direction it might be relevant to consider the class of controllable systems as studied in
the non-probabilistic setting.

We have observed an interesting property: r ⊑w
g s does not imply r ⊑ s. This is because we can choose

the scheduler for s so that it avoids the problematic part of the process that would allow us to distinguish r
and s. As an extreme example, the null process that remains in a quiescent state conforms to any process s
that is initially quiescent under our weak relations: we choose a scheduler for s that does not supply input
(r ‖ Gr and s ‖ Gs both have only the empty sequence). A possible solution, that we would like to explore
in the future, consists of restricting the type of schedulers that s can use to simulate r in a weak relation.
Even though the motivation for defining ⊑w

g is that sometimes we cannot know the environment, due to its
distributed nature, we might know the local projections. Thus it would be interesting to analyse the resulting
weak implementation relations if we require that the two schedulers have the same local projections.
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