299 research outputs found

    Nuclear Magnetic Resonance and Molecular Dynamics Simulation of the Interaction between Recognition Protein H7 of the Novel Influenza Virus H7N9 and Glycan Cell Surface Receptors

    Get PDF
    Avian influenza A viruses, which can also propagate between humans, present serious pandemic threats, particularly in Asia. The specificity (selectivity) of interactions between the recognition protein hemagglutinin (HA) of the virus capsid and the glycoconjugates of host cells also contributes to the efficient spread of the virus by aerosol between humans. Some avian origin viruses, such as H1N1 (South Carolina 1918), have improved their selectivity for human receptors by mutation in the HA receptor binding site, to generate pandemic viruses. Molecular details and dynamics of glycan–HA interactions are of interest, both in predicting the pandemic potential of a new emerging strain and in searching for new antiviral drugs. Two complementary techniques, <sup>1</sup>H saturation transfer difference (<sup>1</sup>H STD) nuclear magnetic resonance and molecular dynamics (MD) simulation, were applied to analyze the interaction of the new H7 (A/Anhui/1/13 H7N9) with LSTa [Neu5Ac α(2→3) Gal β(1→3) GlcNAc β(1→3) Gal β(1→4) Glc] and LSTc [Neu5Ac α(2→6) Gal β(1→4) GlcNAc β(1→3) Gal β(1→4) Glc] pentasaccharides, models of avian and human receptor glycans. Their interactions with H7 were analyzed for the first time using <sup>1</sup>H STD and MD, revealing structural and dynamic behavior that could not be obtained from crystal structures, and contributing to glycan–HA specificity. This highlighted aspects that could affect glycan–HA recognition, including the mutation H7 G228S, which increases H2 and H3 specificity for the human receptor. Finally, interactions between LSTc and H7 were compared with those between LSTc and H1 of H1N1 (South Carolina 1918), contributing to our understanding of the recognition ability of HAs

    Receptor specificity does not affect replication or virulence of the 2009 pandemic H1N1 influenza virus in mice and ferrets

    Get PDF
    Human influenza viruses predominantly bind α2,6 linked sialic acid (SA) while avian viruses bind α2,3 SA-containing complex glycans. Virulence and tissue tropism of influenza viruses have been ascribed to this binding preference. We generated 2009 pandemic H1N1 (pH1N1) viruses with either predominant α2,3 or α2,6 SA binding and evaluated these viruses in mice and ferrets. The α2,3 pH1N1 virus had similar virulence in mice and replicated to similar titers in the respiratory tract of mice and ferrets as the α2,6 and WT pH1N1 viruses. Immunohistochemical analysis determined that all viruses infected similar cell types in ferret lungs. There is increasing evidence that receptor specificity of influenza viruses is more complex than the binary model of α2,6 and α2,3 SA binding and our data suggest that influenza viruses use a wide range of SA moieties to infect host cells.National Institute of Allergy and Infectious Diseases (U.S.) (Intramural Research Program)National Institutes of Health (U.S.) (R37 GM057073-13)Singapore-MIT Alliance for Research and Technolog

    Quasiperiodic tilings with fourfold symmetry

    Full text link

    Hemagglutinin Receptor Binding Avidity Drives Influenza A Virus Antigenic Drift

    Get PDF
    Refer to Web version on PubMed Central for supplementary material.Rapid antigenic evolution in the influenza A virus hemagglutinin precludes effective vaccination with existing vaccines. To understand this phenomenon, we passaged virus in mice immunized with influenza vaccine. Neutralizing antibodies selected mutants with single–amino acid hemagglutinin substitutions that increased virus binding to cell surface glycan receptors. Passaging these high-avidity binding mutants in naïve mice, but not immune mice, selected for additional hemagglutinin substitutions that decreased cellular receptor binding avidity. Analyzing a panel of monoclonal antibody hemagglutinin escape mutants revealed a positive correlation between receptor binding avidity and escape from polyclonal antibodies. We propose that in response to variation in neutralizing antibody pressure between individuals, influenza A virus evolves by adjusting receptor binding avidity via amino acid substitutions throughout the hemagglutinin globular domain, many of which simultaneously alter antigenicity.National Institute of Mental Health (U.S.). Division of Intramural ResearchNational Institute of Allergy and Infectious Diseases (U.S.)Singapore-MIT Alliance for Research and TechnologyNational Institute of General Medical Sciences (U.S.) (GM 57073)National Institute of General Medical Sciences (U.S.) (U54GM62116

    Diffraction properties of one-dimensional finite size fibonacci quasilattice

    Get PDF
    The diffraction patterns from Fibonacci quasilattices have been calculated. Finite-size effects are evaluated for weak and strong peaks. For a smaller number of scatterers (&lt;100) there are fluctuations in the intensities of weak and strong peaks. The fluctuations in weak peaks are greater than that in strong peaks. The fluctuations in intensities of weak and strong peaks near the origin are larger than in the corresponding cases of weak and strong peaks far away from the origin. Small shifts in peak-positions are unexpectedly found, the shifts being proportional to N-3/2 for a large number of scatterers. The diffraction pattern of a one-dimensional crystal and random structure is compared with that of the Fibonacci quasilattice. The strong peaks observed in the diffraction pattern of 1-d crystal show negligible peak-shifts, they being comparable with computational errors even when the number of scatterers is as small as 5. The implications for analysing the experiments are briefly indicated

    X-ray diffraction from single Al<SUB>6</SUB>CuLi<SUB>3</SUB> grains showing five-fold symmetry

    Get PDF
    We present here the detailed results of X-ray diffraction from single quasicrystals of Al6CuLi3. X-ray precession photographs taken down the two-, three- and five-fold axes along with rotation and zero-level Weissenberg photographs are shown. Preliminary analysis of the diffraction data rules out the twin hypothesis

    Human (α2→6) and Avian (α2→3) Sialylated Receptors of Influenza A Virus Show Distinct Conformations and Dynamics in Solution

    Get PDF
    Differential interactions between influenza A virus protein hemagglutinin (HA) and α2→3 (avian) or α2→6 (human) sialylated glycan receptors play an important role in governing host specificity and adaptation of the virus. Previous analysis of HA–glycan interactions with trisaccharides showed that, in addition to the terminal sialic acid linkage, the conformation and topology of the glycans, while they are bound to HA, are key factors in regulating these interactions. Here, the solution conformation and dynamics of two representative avian and human glycan pentasaccharide receptors [LSTa, Neu5Ac-α(2→3)-Gal-β(1→3)-GlcNAc-β(1→3)-Gal-β(1→4)-Glc; LSTc, (Neu5Ac-α(2→6)-Gal-β(1→4)-GlcNAc-β(1→3)-Gal-β(1→4)-Glc] have been explored using nuclear magnetic resonance and molecular dynamics simulation. Analyses demonstrate that, in solution, human and avian receptors sample distinct conformations, topologies, and dynamics. These unique features of avian and human receptors in solution could represent distinct molecular characteristics for recognition by HA, thereby providing the HA–glycan interaction specificity in influenza.Finlombardia SPAConselho Nacional de Pesquisas (Brazil)National Institutes of Health (U.S.) (R37 GM057073-13)Singapore. National Research Foundation (Singapore-MIT Alliance for Research and Technology

    Pathogenesis and transmission of swine origin A(H3N2)v influenza viruses in ferrets

    Get PDF
    Recent isolation of a novel swine-origin influenza A H3N2 variant virus [A(H3N2)v] from humans in the United States has raised concern over the pandemic potential of these viruses. Here, we analyzed the virulence, transmissibility, and receptor-binding preference of four A(H3N2)v influenza viruses isolated from humans in 2009, 2010, and 2011. High titers of infectious virus were detected in nasal turbinates and nasal wash samples of A(H3N2)v-inoculated ferrets. All four A(H3N2)v viruses possessed the capacity to spread efficiently between cohoused ferrets, and the 2010 and 2011 A(H3N2)v isolates transmitted efficiently to naïve ferrets by respiratory droplets. A dose-dependent glycan array analysis of A(H3N2)v showed a predominant binding to α2-6–sialylated glycans, similar to human-adapted influenza A viruses. We further tested the viral replication efficiency of A(H3N2)v viruses in a relevant cell line, Calu-3, derived from human bronchial epithelium. The A(H3N2)v viruses replicated in Calu-3 cells to significantly higher titers compared with five common seasonal H3N2 influenza viruses. These findings suggest that A(H3N2)v viruses have the capacity for efficient replication and transmission in mammals and underscore the need for continued public health surveillance.National Institutes of Health (U.S.) (GM 57073)Singapore-MIT Alliance for Research and Technolog

    Transmission and Pathogenesis of Swine-Origin 2009 A(H1N1) Influenza Viruses in Ferrets and Mice

    Get PDF
    available in PMC 2010 October 12Recent reports of mild to severe influenza-like illness in humans caused by a novel swine-origin 2009 A(H1N1) influenza virus underscore the need to better understand the pathogenesis and transmission of these viruses in mammals. In this study, selected 2009 A(H1N1) influenza isolates were assessed for their ability to cause disease in mice and ferrets and compared with a contemporary seasonal H1N1 virus for their ability to transmit to naïve ferrets through respiratory droplets. In contrast to seasonal influenza H1N1 virus, 2009 A(H1N1) influenza viruses caused increased morbidity, replicated to higher titers in lung tissue, and were recovered from the intestinal tract of intranasally inoculated ferrets. The 2009 A(H1N1) influenza viruses exhibited less efficient respiratory droplet transmission in ferrets in comparison with the highly transmissible phenotype of a seasonal H1N1 virus. Transmission of the 2009 A(H1N1) influenza viruses was further corroborated by characterizing the binding specificity of the viral hemagglutinin to the sialylated glycan receptors (in the human host) by use of dose-dependent direct receptor-binding and human lung tissue–binding assays
    • …
    corecore