10,171 research outputs found
Ag and Au Atoms Intercalated in Bilayer Heterostructures of Transition Metal Dichalcogenides and Graphene
The diffusive motion of metal nanoparticles Au and Ag on monolayer and
between bilayer heterostructures of transition metal dichalcogenides and
graphene are investigated in the framework of density functional theory. We
found that the minimum energy barriers for diffusion and the possibility of
cluster formation depend strongly on both the type of nanoparticle and the type
of monolayers and bilayers. Moreover, the tendency to form clusters of Ag and
Au can be tuned by creating various bilayers. Tunability of the diffusion
characteristics of adatoms in van der Waals heterostructures holds promise for
controllable growth of nanostructures.Comment: accepted, APL Ma
Quantum Transport Characteristics of Lateral pn-Junction of Single Layer TiS3
Using density functional theory and nonequilibrium Greens functions-based
methods we investigated the electronic and transport properties of monolayer
TiS3 pn-junction. We constructed a lateral pn-junction in monolayer TiS3 by
using Li and F adatoms. An applied bias voltage caused significant variability
in the electronic and transport properties of the TiS3 pn-junction. In
addition, spin dependent current-voltage characteristics of the constructed
TiS3 pn-junction were analyzed. Important device characteristics were found
such as negative differential resistance and rectifying diode behaviors for
spin-polarized currents in the TiS3 pn-junction. These prominent conduction
properties of TiS3 pn-junction offer remarkable opportunities for the design of
nanoelectronic devices based on a recently synthesized single-layered material
-AlN-Mg(OH) vdW Bilayer Heterostructure: Tuning the excitonic characteristics
Motivated by recent studies that reported the successful synthesis of
monolayer Mg(OH) [Suslu \textit{et al.}, Sci. Rep. \textbf{6}, 20525
(2016)] and hexagonal (\textit{h}-)AlN [Tsipas \textit{et al}., Appl. Phys.
Lett. \textbf{103}, 251605 (2013)], we investigate structural, electronic, and
optical properties of vertically stacked -AlN and Mg(OH), through
\textit{ab initio} density-functional theory (DFT), many-body quasi-particle
calculations within the GW approximation, and the Bethe-Salpeter equation
(BSE). It is obtained that the bilayer heterostructure prefers the
stacking having direct band gap at the with Type-II band
alignment in which the valance band maximum and conduction band minimum
originate from different layer. Regarding the optical properties, the imaginary
part of the dielectric function of the individual layers and hetero-bilayer are
investigated. The hetero-bilayer possesses excitonic peaks which appear only
after the construction of the hetero-bilayer. The lowest three exciton peaks
are detailedly analyzed by means of band decomposed charge density and the
oscillator strength. Furthermore, the wave function calculation shows that the
first peak of the hetero-bilayer originates from spatially indirect exciton
where the electron and hole localized at -AlN and Mg(OH),
respectively, which is important for the light harvesting applications.Comment: Accepted by Physical Review
Stable Ultra-thin CdTe Crystal: A Robust Direct Gap Semiconductor
Employing density functional theory based calculations, we investigate
structural, vibrational and strain-dependent electronic properties of an
ultra-thin CdTe crystal structure that can be de- rived from its bulk
counterpart. It is found that this ultra-thin crystal has an 8-atom primitive
unit cell with considerable surface reconstructions. Dynamic stability of the
structure is predicted based on its calculated vibrational spectrum. Electronic
band structure calculations reveal that both electrons and holes in single
layer CdTe possess anisotropic in-plane masses and mobilities. Moreover, we
show that the ultra-thin CdTe has some interesting electromechanical features,
such as strain-dependent anisotropic variation of the band gap value, and its
rapid increase under per- pendicular compression. The direct band gap
semiconducting nature of the ultra-thin CdTe crystal remains unchanged under
all types of applied strain. With a robust and moderate direct band gap,
single-layer CdTe is a promising material for nanoscale strain dependent device
applications
Influence of lipopolysaccharide on proinflammatory gene expression in human corneal, conjunctival and meibomian gland epithelial cells
PURPOSE:
Lipopolysaccharide (LPS), a bacterial endotoxin, is known to stimulate leuokotriene B4 (LTB4) secretion by human corneal (HCECs), conjunctival (HConjECs) and meibomian gland (HMGECs) epithelial cells. We hypothesize that this LTB4 effect represents an overall induction of proinflammatory gene expression in these cells. Our objective was to test this hypothesis.
METHODS:
Immortalized HCECs, HConjECs and HMGECs were cultured in the presence or absence of LPS (15 μg/ml) and ligand binding protein (LBP; 150 ng/ml). Cells were then processed for RNA isolation and the analysis of gene expression by using Illumina BeadChips, background subtraction, cubic spline normalization and GeneSifter software.
RESULTS:
Our findings show that LPS induces a striking increase in proinflammatory gene expression in HCECs and HConjECs. These cellular reactions are associated with a significant up-regulation of genes associated with inflammatory and immune responses (e.g. IL-1β, IL-8, and tumor necrosis factor), including those related to chemokine and Toll-like receptor signaling pathways, cytokine-cytokine receptor interactions, and chemotaxis. In contrast, with the exception of Toll-like signaling and associated innate immunity pathways, almost no proinflammatory ontologies were upregulated by LPS in HMGECs.
CONCLUSIONS:
Our results support our hypothesis that LPS stimulates proinflammatory gene expression in HCECs and HConjECs. However, our findings also show that LPS does not elicit such proinflammatory responses in HMGECs
Monolayer honeycomb structures of group IV elements and III-V binary compounds
Using first-principles plane wave calculations, we investigate two
dimensional honeycomb structure of Group IV elements and their binary
compounds, as well as the compounds of Group III-V elements. Based on structure
optimization and phonon mode calculations, we determine that 22 different
honeycomb materials are stable and correspond to local minima on the
Born-Oppenheimer surface. We also find that all the binary compounds containing
one of the first row elements, B, C or N have planar stable structures. On the
other hand, in the honeycomb structures of Si, Ge and other binary compounds
the alternating atoms of hexagons are buckled, since the stability is
maintained by puckering. For those honeycomb materials which were found stable,
we calculated optimized structures, cohesive energies, phonon modes, electronic
band structures, effective cation and anion charges, and some elastic
constants. The band gaps calculated within Density Functional Theory using
Local Density Approximation are corrected by GW0 method. Si and Ge in honeycomb
structure are semimetal and have linear band crossing at the Fermi level which
attributes massless Fermion character to charge carriers as in graphene.
However, all binary compounds are found to be semiconductor with band gaps
depending on the constituent atoms. We present a method to reveal elastic
constants of 2D honeycomb structures from the strain energy and calculate the
Poisson's ratio as well as in-plane stiffness values. Preliminary results show
that the nearly lattice matched heterostructures of ...Comment: 12 Pages, 7 Figures, 1 Table;
http://link.aps.org/doi/10.1103/PhysRevB.80.15545
- …