124 research outputs found
A low background Micromegas detector for the CAST experiment
A low background Micromegas detector has been operating on the CAST
experiment at CERN for the search of solar axions during the first phase of the
experiment (2002-2004). The detector operated efficiently and achieved a very
low level of background rejection ( counts
keVcms) thanks to its good spatial and energy resolution
as well as the low radioactivity materials used in the construction of the
detector. For the second phase of the experiment (2005-2007), the detector will
be upgraded by adding a shielding and including focusing optics. These
improvements should allow for a background rejection better than two orders of
magnitude.Comment: 6 pages, 3 figures To appear on the proceedings of the 9th ICATPP
Conference on AStroparticle, Particle, Space Physics, Detectors and Medical
Physics Application
Solar axion search with the CAST experiment
The CAST (CERN Axion Solar Telescope) experiment is searching for solar
axions by their conversion into photons inside the magnet pipe of an LHC
dipole. The analysis of the data recorded during the first phase of the
experiment with vacuum in the magnet pipes has resulted in the most restrictive
experimental limit on the coupling constant of axions to photons. In the second
phase, CAST is operating with a buffer gas inside the magnet pipes in order to
extent the sensitivity of the experiment to higher axion masses. We will
present the first results on the data taking as well as the
system upgrades that have been operated in the last year in order to adapt the
experiment for the data taking. Expected sensitivities on the
coupling constant of axions to photons will be given for the recent run just started in March 2008.Comment: Proceedings of the ICHEP 2008 conferenc
Search for low Energy solar Axions with CAST
We have started the development of a detector system, sensitive to single
photons in the eV energy range, to be suitably coupled to one of the CAST
magnet ports. This system should open to CAST a window on possible detection of
low energy Axion Like Particles emitted by the sun. Preliminary tests have
involved a cooled photomultiplier tube coupled to the CAST magnet via a
Galileian telescope and a switched 40 m long optical fiber. This system has
reached the limit background level of the detector alone in ideal conditions,
and two solar tracking runs have been performed with it at CAST. Such a
measurement has never been done before with an axion helioscope. We will
present results from these runs and briefly discuss future detector
developments.Comment: Paper submitted to the proceedings of the "4th Patras Workshop on
Axions, WIMPs and WISPs", DESY, Hamburg Site - Germany, 18-21 June 2008.
Author affiliations are reported on the title page of the paper. In version
2: 1 affiliation change, 3 references adde
In-band and out-of-band reflectance calibrations of the EUV multilayer mirrors of the atmospheric imaging assembly instrument aboard the Solar Dynamics Observatory
Abstract not provide
Recommended from our members
LCLS X-ray mirror measurements using a large aperture visible light interferometer
Synchrotron or FEL X-ray mirrors are required to deliver an X-ray beam from its source to an experiment location, without contributing significantly to wave front distortion. Accurate mirror figure measurements are required prior to installation to meet this intent. This paper describes how a 300 mm aperture phasing interferometer was calibrated to <1 nm absolute accuracy and used to mount and measure 450 mm long flats for the Linear Coherent Light Source (LCLS) at Stanford Linear Accelerator Center. Measuring focus mirrors with an interferometer requires additional calibration, because high fringe density introduces systematic errors from the interferometer's imaging optics. This paper describes how these errors can be measured and corrected. The calibration approaches described here apply equally well to interferometers larger than 300 mm aperture, which are becoming more common in optics laboratories. The objective of this effort was to install LCLS flats with < 10 nm of spherical curvature, and < 2 nm rms a-sphere. The objective was met by measuring the mirrors after fabrication, coating and mounting, using a 300 mm aperture phasing interferometer calibrated to an accuracy < 1 nm. The key to calibrating the interferometer accurately was to sample the error using independent geometries that are available. The results of those measurements helped identify and reduce calibration error sources. The approach used to measure flats applies equally well to focus mirrors, provided an additional calibration is performed to measure the error introduced by fringe density. This calibration has been performed on the 300 mm aperture interferometer, and the measurement correction was evaluated for a typical focus mirror. The 300 mm aperture limitation requires stitching figure measurements together for many X-ray mirrors of interest, introducing another possible error source. Stitching is eliminated by applying the calibrations described above to larger aperture instruments. The authors are presently extending this work to a 600 mm instrument. Instruments with 900 mm aperture are now becoming available, which would accommodate the largest mirrors of interest
Recommended from our members
Optics and multilayer coatings for EUVL systems
EUV lithography (EUVL) employs illumination wavelengths around 13.5 nm, and in many aspects it is considered an extension of optical lithography, which is used for the high-volume manufacturing (HVM) of today's microprocessors. The EUV wavelength of illumination dictates the use of reflective optical elements (mirrors) as opposed to the refractive lenses used in conventional lithographic systems. Thus, EUVL tools are based on all-reflective concepts: they use multilayer (ML) coated optics for their illumination and projection systems, and they have a ML-coated reflective mask
Atomic Force Microscope (AFM) measurements and analysis on Tinsley AIA-1000-003 primary substrate
Recommended from our members
Zirconium and Niobium Transmission Data at Wavelengths from 11-16 nm and 200-1200 nm
Transmission measurements of niobium and zirconium at both extreme-ultraviolet (EUV) and ultraviolet, visible, and near infrared (UV/Vis/NIR) wavelengths are presented. Thin foils of various thicknesses mounted on nickel mesh substrates were measured, and these data were used to calculate the optical constants {delta} and {beta} of the complex refractive index n = 1- {delta} +i{beta}. {beta} values were calculated directly from the measured transmittance of the foils after normalizing for the nickel mesh. The average {beta} values for each set of foils are presented as a function of wavelength. The real (dispersive) part of the refractive index, {delta} was then calculated from Kramers-Kronig analysis by combining these {beta} values with those from previous experimental data and the atomic tables
Recommended from our members
Atomic Force Microscope (AFM) measurements and analysis on Sagem 05R0025 secondary substrate
The summary of Atomic Force Microscope (AFM) on Sagem 05R0025 secondary substrate: (1) 2 x 2 {micro}m{sup 2} and 10 x 10 {micro}m{sup 2} AFM measurements and analysis on Sagem 05R0025 secondary substrate at LLNL indicate rather uniform and extremely isotropic finish across the surface, with high-spatial frequency roughness {sigma} in the range 5.1-5.5 {angstrom} rms; (2) the marked absence of pronounced long-range polishing marks in any direction, combined with increased roughness in the very high spatial frequencies, are consistent with ion-beam polishing treatment on the surface. These observations are consistent with all earlier mirrors they measured from the same vendor; and (3) all data were obtained with a Digital Instruments Dimension 5000{trademark} atomic force microscope
- …
