3,280 research outputs found

    Survival and Growth of American Alligator (Alligator mississippiensis) hatchlings after artificial incubation and repatriation

    Get PDF
    Hatchling American Alligators (Alligator mississippiensis) produced from artificially incubated wild eggs were returned to their natal areas (repatriated). We compared artificially incubated and repatriated hatchlings released within and outside the maternal alligator’s home range with naturally incubated hatchlings captured and released within the maternal alligator’s home range on Lake Apopka, Lake Griffin, and Orange Lake in Florida. We used probability of recapture and total length at approximately nine months after hatching as indices of survival and growth rates. Artificially incubated hatchlings released outside of the maternal alligator’s home range had lower recapture probabilities than either naturally incubated hatchlings or artificially incubated hatchlings released near the original nest site. Recapture probabilities of other treatments did not differ significantly. Artificially incubated hatchlings were approximately 6% shorter than naturally incubated hatchlings at approximately nine months after hatching. We concluded that repatriation of hatchlings probably would not have long-term effects on populations because of the resiliency of alligator populations to alterations of early age-class survival and growth rates of the magnitude that we observed. Repatriation of hatchlings may be an economical alternative to repatriation of older juveniles for population restoration. However, the location of release may affect subsequent survival and growth

    Formation of Dark Matter Haloes in a Homogeneous Dark Energy Universe

    Full text link
    Several independent cosmological tests have shown evidences that the energy density of the Universe is dominated by a dark energy component, which cause the present accelerated expansion. The large scale structure formation can be used to probe dark energy models, and the mass function of dark matter haloes is one of the best statistical tools to perform this study. We present here a statistical analysis of mass functions of galaxies under a homogeneous dark energy model, proposed in the work of Percival (2005), using an observational flux-limited X-ray cluster survey, and CMB data from WMAP. We compare, in our analysis, the standard Press-Schechter (PS) approach (where a Gaussian distribution is used to describe the primordial density fluctuation field of the mass function), and the PL (Power Law) mass function (where we apply a nonextensive q-statistical distribution to the primordial density field). We conclude that the PS mass function cannot explain at the same time the X-ray and the CMB data (even at 99% confidence level), and the PS best fit dark energy equation of state parameter is ω=−0.58\omega=-0.58, which is distant from the cosmological constant case. The PL mass function provides better fits to the HIFLUGCS X-ray galaxy data and the CMB data; we also note that the ω\omega parameter is very sensible to modifications in the PL free parameter, qq, suggesting that the PL mass function could be a powerful tool to constrain dark energy models.Comment: 4 pages, 2 figures, Latex. Accepted for publication in the International Journal of Modern Physics D (IJMPD)

    From Heisenberg matrix mechanics to EBK quantization: theory and first applications

    Full text link
    Despite the seminal connection between classical multiply-periodic motion and Heisenberg matrix mechanics and the massive amount of work done on the associated problem of semiclassical (EBK) quantization of bound states, we show that there are, nevertheless, a number of previously unexploited aspects of this relationship that bear on the quantum-classical correspondence. In particular, we emphasize a quantum variational principle that implies the classical variational principle for invariant tori. We also expose the more indirect connection between commutation relations and quantization of action variables. With the help of several standard models with one or two degrees of freedom, we then illustrate how the methods of Heisenberg matrix mechanics described in this paper may be used to obtain quantum solutions with a modest increase in effort compared to semiclassical calculations. We also describe and apply a method for obtaining leading quantum corrections to EBK results. Finally, we suggest several new or modified applications of EBK quantization.Comment: 37 pages including 3 poscript figures, submitted to Phys. Rev.

    WHAM Observations of H-Alpha, [S II], and [N II] toward the Orion and Perseus Arms: Probing the Physical Conditions of the Warm Ionized Medium

    Get PDF
    A large portion of the Galaxy (l = 123 deg to 164 deg, b = -6 deg to -35 deg), which samples regions of the Local (Orion) spiral arm and the more distant Perseus arm, has been mapped with the Wisconsin H-Alpha Mapper (WHAM) in the H-Alpha, [S II] 6716, and [N II] 6583 lines. Several trends noticed in emission-line investigations of diffuse gas in other galaxies are confirmed in the Milky Way and extended to much fainter emission. We find that the [S II]/H-Alpha and [N II]/H-Alpha ratios increase as absolute H-Alpha intensities decrease. For the more distant Perseus arm emission, the increase in these ratios is a strong function of Galactic latitude and thus, of height above the Galactic plane. The [S II]/[N II] ratio is relatively independent of H-Alpha intensity. Scatter in this ratio appears to be physically significant, and maps of it suggest regions with similar ratios are spatially correlated. The Perseus arm [S II]/[N II] ratio is systematically lower than Local emission by 10%-20%. With [S II]/[N II] fairly constant over a large range of H-Alpha intensities, the increase of [S II]/H-Alpha and [N II]/H-Alpha with |z| seems to reflect an increase in temperature. Such an interpretation allows us to estimate the temperature and ionization conditions in our large sample of observations. We find that WIM temperatures range from 6,000 K to 9,000 K with temperature increasing from bright to faint H-Alpha emission (low to high [S II]/H-Alpha and [N II]/H-Alpha) respectively. Changes in [S II]/[N II] appear to reflect changes in the local ionization conditions (e.g. the S+/S++ ratio). We also measure the electron scale height in the Perseus arm to be 1.0+/-0.1 kpc, confirming earlier, less accurate determinations.Comment: 28 pages, 10 figures. Figures 2 and 3 are full color--GIFs provided here, original PS figures at link below. Accepted for publication in ApJ. More information about the WHAM project can be found at http://www.astro.wisc.edu/wham/ . REVISION: Figure 6, bottom panel now contains the proper points. No other changes have been mad

    Control of Integrable Hamiltonian Systems and Degenerate Bifurcations

    Full text link
    We discuss control of low-dimensional systems which, when uncontrolled, are integrable in the Hamiltonian sense. The controller targets an exact solution of the system in a region where the uncontrolled dynamics has invariant tori. Both dissipative and conservative controllers are considered. We show that the shear flow structure of the undriven system causes a Takens-Bogdanov birfurcation to occur when control is applied. This implies extreme noise sensitivity. We then consider an example of these results using the driven nonlinear Schrodinger equation.Comment: 25 pages, 11 figures, resubmitted to Physical Review E March 2004 (originally submitted June 2003), added content and reference

    The Archean crust in the Wawa-Chapleau-Timmins region. A field guidebook prepared for the 1983 Archean Geochemistry-Early Crustal Genesis Field Conference

    Get PDF
    This guidebook describes the characteristics and interrelationships of Archean greenstone-granite and high-grade gneiss terrains of the Superior Province. A 300-km long west to east transect between Wawa and Timmins, Ontario will be used to illustrate regional-scale relationships. The major geological features of the Superior Province are described

    Ultimate decoherence border for matter-wave interferometry

    Full text link
    Stochastic backgrounds of gravitational waves are intrinsic fluctuations of spacetime which lead to an unavoidable decoherence mechanism. This mechanism manifests itself as a degradation of the contrast of quantum interferences. It defines an ultimate decoherence border for matter-wave interferometry using larger and larger molecules. We give a quantitative characterization of this border in terms of figures involving the gravitational environment as well as the sensitivity of the interferometer to gravitational waves. The known level of gravitational noise determines the maximal size of the molecular probe for which interferences may remain observable. We discuss the relevance of this result in the context of ongoing progresses towards more and more sensitive matter-wave interferometry.Comment: 4 page

    Friedmann Equation for Brans Dicke Cosmology

    Full text link
    In the context of Brans-Dicke scalar tensor theory of gravitation, the cosmological Friedmann equation which relates the expansion rate HH of the universe to the various fractions of energy density is analyzed rigorously. It is shown that Brans-Dicke scalar tensor theory of gravitation brings a negligible correction to the matter density component of Friedmann equation. Besides, in addition to ΩΛ\Omega_{\Lambda} and ΩM\Omega_{M} in standard Einstein cosmology, another density parameter, ΩΔ\Omega_{_{\Delta}}, is expected by the theory. This implies that if ΩΔ\Omega_{_{\Delta}} is found to be nonzero, data will favor this model instead of the standard Einstein cosmological model with cosmological constant and will enable more accurate predictions for the rate of change of Newtonian gravitational constant in the future.Comment: minor reference change

    Modified Special Relativity on a fluctuating spacetime

    Get PDF
    It was recently proposed that deformations of the relativistic symmetry, as those considered in Deformed Special Relativity (DSR), can be seen as the outcome of a measurement theory in the presence of non-negligible (albeit small) quantum gravitational fluctuations [1,2]. In this paper we explicitly consider the case of a spacetime described by a flat metric endowed with stochastic fluctuations and, for a free particle, we show that DSR-like nonlinear relations between the spaces of the measured and classical momenta, can result from the average of the stochastic fluctuations over a scale set be the de Broglie wavelength of the particle. As illustrative examples we consider explicitly the averaging procedure for some simple stochastic processes and discuss the physical implications of our results.Comment: 7 pages, no figure

    The frictional Schr\"odinger-Newton equation in models of wave function collapse

    Get PDF
    Replacing the Newtonian coupling G by -iG, the Schrodinger-Newton equation becomes ``frictional''. Instead of the reversible Schrodinger-Newton equation, we advocate its frictional version to generate the set of pointer states for macroscopic quantum bodies.Comment: 6pp LaTeX for J.Phys.Conf.Ser.+2 figs. Talk given at the Int. Workshop DICE2006 "Quantum Mechanics between Decoherence and Determinism: new aspects from particle physics to cosmology" Piombino, Sept 11-15, 200
    • …
    corecore