249 research outputs found

    An integrated sequence stratigraphic, palaeoenvironmental, and chronostratigraphic analysis of the Tangahoe Formation, southern Taranaki coast, with implications for mid-Pliocene (c. 3.4–3.0 Ma) glacio-eustatic sea-level changes

    Get PDF
    Sediments of the mid-Pliocene (c. 3.4–3.0 Ma) Tangahoe Formation exposed in cliffs along the South Taranaki coastline of New Zealand comprise a 270 m thick, cyclothemic shallow-marine succession that has been gently warped into a north to south trending, low angle anticline. This study examines the sedimentologic, faunal, and petrographic characteristics of 10 Milankovitch-scale (6th order), shallow-marine depositional sequences exposed on the western limb of the anticline. The sequences are recognised on the basis of the cyclic vertical stacking of their constituent lithofacies, which are bound by sharp wave cut surfaces produced during transgressive shoreface erosion. Each sequence comprises three parts: (1) a 0.2–2 m thick, deepening upwards, basal suite of reworked bioclastic lag deposits (onlap shellbed) and/or an overlying matrix supported, molluscan shellbed of offshore shelf affinity (backlap shellbed); (2) a 5–20 m thick, gradually shoaling, aggradational siltstone succession; and (3) a 5–10 m thick, strongly progradational, well sorted “forced regressive” shoreline sandstone. The three-fold subdivision corresponds to transgressive, highstand, and regressive systems tracts (TSTs, HSTs, and RSTs) respectively, and represents deposition during a glacio-eustatic sea-level cycle. Lowstand systems tract sediments are not recorded because the outcrop is situated c. 100 km east of the contemporary shelf edge and was subaerially exposed at that time. Well developed, sharp- and gradational-based forced regressive sandstones contain a variety of storm-emplaced sedimentary structures, and represent the rapid and abrupt basinward translation of the shoreline on to a storm dominated, shallow shelf during eustatic sea-level fall. Increased supply of sediment from north-west South Island during “forced regression” is indicated from petrographic analyses of the heavy mineralogy of the sandstones. A chronology based on biostratigraphy and the correlation of a new magnetostratigraphy to the magnetic polarity timescale allows: (1) identification of the Mammoth (C2An.2r) and Kaena (C2An.1r) subchrons; (2) correlation of the coastal section to the Waipipian Stage; and (3) estimation of the age of the coastal section as 3.36–3.06 Ma. Qualitative assessment of foraminiferal census data and molluscan palaeoecology reveals cyclic changes in water depth from shelf to shoreline environments during the deposition of each sequence. Seven major cycles in water depth of between 20 and 50m have been correlated to individual 40 ka glacio-eustatic sea-level cycles on the marine oxygen isotope timescale. The coastal Tangahoe Formation provides a shallow-marine record of global glacio-eustasy prior to the development of significant ice sheets on Northern Hemisphere continents, and supports evidence from marine δ18O archives that changes in Antarctic ice volume were occurring during the Pliocene

    Transitional Activities in Elite Football: Frequency, Type, Effect on Match Outcome and the Novel Concept of Clusters

    Get PDF
    The aims of this study were to analyze the effect of contextual variables on physical metrics during transitions and investigate repeated transitional activities during transitions. Data was collected from 10 matches (23 elite soccer players). A total of 4249 individual observations were recorded including 1164 positive transitions (defense-to-attack), 1269 negative transitions (attack-to-defense), 1120 fast attacks, and 696 high pressure activities. Metrics per minute (m·min-1) as well as absolute variables: Total Distance (TD), high-speed running distance (HSRD, >19.8km·h-1), sprint distance (SD, >25.2km·h-1), relative high-speed running distance (VelB4), relative sprint distance (VelB5), acceleration distance (AccB3 Dist., distance with variations in running speed >3m·s-2), the number of high-intensity accelerations (HI Acc, >3m·s-2) and decelerations (HI Dec, >3m·s-2) were quantified. Significant effects of match half were found for TD (p <.001; ES =.03), HSRD (p = .023; ES = .012), VelB4 (p < .001; ES = .04), and HI Dec (p = .037; ES = .010). Match outcome had a relation to TD (m), HSRD (m) (p < .001), SD (m) and VelB4 (m) (p = .011) as well as VelB5 (m), and AccB3 Dist. distance (m) (p = .002 and p = .020, respectively). Performance in lost matches was lower in the 2nd half (p≤0.05). This study indicates that players are exposed to repeated short and intermittent high velocity actions together, highlighting the need to move away from 90min averages and pay more attention to transitional activities in modern training design

    The impact of injury on match running performance following the return to competitive match-play over two consecutive seasons in elite European soccer players

    Get PDF
    Based on the assessment and diagnosis, the rest period following a moderate/severe injury may lead to deconditioning for the injured player and therefore an association with a prolonged rehabilitation, re-conditioning and return to sport is observed post-injury. The aim of the present study was to assess the impact of all injuries on match running performance following the return to competitive match-play over two consecutive seasons in elite European soccer players. A retrospective analysis was conducted utilizing data related to a player’s injury and match running performance. A club physiotherapist consistently recorded availability and injury data in a standardized format. Linear mixed modelling analysis revealed no difference between PRE and POST1, POST2, and POST3 for total distance, running distance, high-intensity distance, and sprint distance (all p &gt;0.05). Although, maximum speed was significantly (p&lt;0.05) lower in POST1 and POST2 when compared to PRE, in both cases with a large (ES = 1.88) effect. No significant difference was observed for maximum speed between PRE and POST3 (p=0.07). There were very low correlations between the number of days absent and changes in maximum speed between POST1 and PRE (r = 0.09, 95% CI -0.42 to 0.56), and POST2 and PRE (r = 0.10, 95% CI -0.42 to 0.57), respectively. In conclusion, no variation in distance variables were found regardless of one, two or three matches post-injury compared to pre-injury status. Moreover, maximum speed was lower during the first three matches post-injury, although the mean value was slightly lower. Finally, a low correlation between absent days and maximum speed loss between pre-injury and following one and two matches were foun

    Physical match demands across different playing positions during transitional play and high-pressure activities in elite soccer.

    Get PDF
    This study explored physical match demands across different playing positions during transitional play, to inform the need for position-specific training interventions. Data was collected using 10 Hz GPS units from 10 competitive matches including 23 elite soccer players of the 1st Polish Division (Ekstraklasa) in season 2020–21. A total of 4249 positional observations were made; center backs (n = 884), full backs (n = 972), central defensive midfielders (n = 236), central attacking midfielders (n = 270), central midfielders (n = 578), wingers (n = 778), and attackers (n = 531). Match data reflected distances covered per minute (m·min−1): total distance (TD), high-speed running distance (HSRD, > 19.8 km·h⁻¹), sprint distance (SD, > 25.2 km·h⁻¹), and the frequency of high-intensity accelerations and decelerations (A+D, > 3 m·s⁻²; n·min⁻¹). Total absolute sprint distance (SD, > 25.2 km·h⁻¹) and total relative sprint distance (Rel B5) were also quantified. A univariate analysis of variance revealed position-specific differences. Significant effects of position were found for all analysed metrics during transitional play (large ESs; p < .001). Central attacking midfielders displayed higher TD (m·min⁻¹), fullbacks covered highest SD (m·min⁻¹) and wingers achieved the highest A+D (n ·min⁻¹) (p ≤ 0.05). Centre backs displayed the lowest physical outputs when compared to all other positions, except in A+D (n ·min⁻¹) during defensive transitions (p ≤ 0.05). Attackers displayed the highest physical metrics during high pressure activities (p ≤ 0.05). Coaches should carefully consider positional transitional demands to better inform training design. With specific attention paid to drills that replicate game play

    Petrogenesis of diachronous mixed siliciclastic-carbonate megafacies in the cool-water Oligocene Tikorangi Formation, Taranaki Basin, New Zealand

    Get PDF
    The Oligocene (Whaingaroan-Waitakian) Tikorangi Formation is a totally subsurface, lithostratigraphically complex, mixed siliciclastic-limestone-rich sequence forming an important fracture reservoir within Taranaki Basin, New Zealand. Petrographically the formation comprises a spectrum of interbedded rock types ranging from calcareous mudstone to wackestone to packstone to clean sparry grainstone. Skeletal and textural varieties within these rock types have aided in the identification of three environmentally distinctive megafacies for the Tikorangi Formation rocks-shelfal, foredeep, and basinal. Data from these megafacies have been used to detail previous conclusions on the petrogenesis and to further refine depositional paleoenvironmental models for the Tikorangi Formation in the central eastern Taranaki Basin margin.Shelfal Megafacies 1 rocks (reference well Hu Road-1A) are latest Oligocene (early Waitakian) in age and formed on or proximal to the Patea-Tongaporutu-Herangi basement high. They are characterised by coarse, skeletal-rich, pure sparry grainstone comprising shallow water, high energy taxa (bryozoans, barnacles, red algae) and admixtures of coarse well-rounded lithic sand derived from Mesozoic basement greywacke. This facies type has previously gone unrecorded in the Tikorangi Formation. Megafacies 2 is a latest Oligocene (early Waitakian) foredeep megafacies (formerly named shelfal facies) formed immediately basinward and west of the shelfal basement platform. It accumulated relatively rapidly (>20 cm/ka) from redeposition of shelfal megafacies biota that became intermixed with bathyal taxa to produce a spectrum of typically mudstone through to sparry grainstone. The resulting skeletal mix (bivalve, echinoderm, planktic and benthic foraminiferal, red algal, bryozoan, nannofossil) is unlike that in any of the age-equivalent limestone units in neighbouring onland King Country Basin. Megafacies 3 is an Oligocene (Whaingaroan-Waitakian) offshore basinal megafacies (formerly termed bathyal facies) of planktic foraminiferal-nannofossil-siliciclastic wackestone and mudstone formed away from redepositional influences. The siliciclastic input in this distal basinal setting (sedimentation rates <7 mm/ka) was probably sourced mainly from oceanic currents carrying suspended sediment from South Island provenances exposed at this time.Tikorangi Formation rocks record the Taranaki Basin’s only period of carbonate-dominated sedimentation across a full range of shelfal, foredeep, and basinal settings. Depositional controls on the three contrasting megafacies were fundamentally the interplay of an evolving and complex plate tectonic setting, including development of a carbonate foredeep, changes in relative sea level within an overall transgressive regime, and changing availability, sources, and modes of deposition of both bioclastic and siliciclastic sediments. The mixed siliciclastic-carbonate nature of the formation, and its skeletal assemblages, low-Mg calcite mineralogy, and delayed deep burial diagenetic history, are features consistent with formation in temperate-latitude cool waters

    On the scattering of entropy waves at sudden area expansions

    Get PDF
    In this work, we investigate both numerically and theoretically the sound generated by entropy waves passing through sudden area expansions. This is a canonical configuration representing internal flows with flow separation and stagnation pressure losses. The numerical approach is based on a triple decomposition of the flow variables into a steady mean, a small-amplitude coherent part, and a stochastic turbulent part. The coherent part contains acoustic, vortical, and entropy waves. The mean flow is obtained as the solution of the Reynolds-Averaged Navier–Stokes (RANS) equations. The equations governing the coherent perturbations are linearised and solved in the frequency domain. To account for the effect of turbulence on the coherent perturbations, a frozen eddy viscosity model is employed. When entropy fluctuations pass through the area expansion, the generated entropy noise behaves as a low-pass filter. The numerical predictions of the noise at low frequencies are compared to the predictions of compact, quasi-one-dimensional, and isentropic theory and large discrepancies are observed. An alternative model for the generated entropy noise tailored for area expansions is then proposed. Such model is based on the conservation of mass, momentum, and energy written in integral form. The model assumes zero frequency and the one-dimensionality of the flow variables far upstream and downstream of the expansion. The predictions of this model agree well with the numerical simulations across a range of finite subsonic Mach numbers including low, intermediate, and high Mach numbers. The contributions of this work are both numerical and theoretical. Numerically, a triple decomposition adapted to high-Mach-number, compressible flows is introduced for the first time in the context of acoustic simulations. From a theoretical point of view, the quasi-steady model proposed here correctly captures the low-frequency entropy noise generated at sudden area expansions, including at high subsonic Mach numbers

    Textural variations in Neogene pelagic carbonate ooze at DSDP Site 593, southern Tasman Sea, and their paleoceanographic implications

    Get PDF
    Changes in Neogene sediment texture in pelagic carbonate-rich oozes on the Challenger Plateau, southern Tasman Sea, are used to infer changes in depositional paleocurrent velocities. The most obvious record of textural change is in the mud:sand ratio. Increases in the sand content are inferred to indicate a general up-core trend towards increasing winnowing of sediments resulting from increasing flow velocity of Southern Component Intermediate Water (SCIW), the forerunner of Antarctic Intermediate Water. In particular, the intervals c. 19-14.5 Ma, c. 9.5-8 Ma, and after 5 Ma are suggested to be times of increased SCIW velocity and strong sediment winnowing. Within the mud fraction, the fine silt to coarse clay sizes from 15.6 to 2 µm make the greatest contribution to the sediments and are composed of nannofossil plates. During extreme winnowing events it is the fine silt to very coarse clay material (13-3 µm) within this range that is preferentially removed, suggesting the 10 µm cohesive silt boundary reported for siliciclastic sediments does not apply to calcitic skeletal grains. The winnowed sediment comprises coccolithophore placoliths and spheres, represented by a mode at 4-7 µm. Further support for seafloor winnowing is gained from the presence in Hole 593 of a condensed sedimentary section from c. 18 to 14 Ma where the sand content increases to c. 20% of the bulk sample. Associated with the condensed section is a 6 m thick orange unit representing sediments subjected to particularly oxygen-rich, late early to early middle Miocene SCIW. Together these are inferred to indicate increased SCIW velocity resulting in winnowed sediment associated with faster arrival of oxygen-rich surface water subducted to form SCIW. Glacial development of Antarctica has been recorded from many deep-sea sites, with extreme glacials providing the mechanism to increase watermass flow. Miocene glacial zones Mi1b-Mi6 are identified in an associated oxygen isotope record from Hole 593, and correspond with times of particularly invigorated paleocirculation, bottom winnowing, and sediment textural changes

    Playing position and match location affect the number of highintensity efforts more than the quality of the opposition in elite football players

    Get PDF
    This study aimed to examine the impact of playing position (PP), match location (ML), and opposition standard (OS) on team and individual acceleration (ACC) and deceleration (DEC) efforts. Fifty professional football players were monitored across 24 English Premier Development League matches during the 2020/21 season. High-intensity ACC and DEC thresholds were set at > +3 m·s−2 and < -3 m·s−2, respectively. Players were divided into five PPs: centre backs (CB; n = 68), full-backs (FB; n = 24), centre midfielders (CM; n = 54), wide midfielders (WM; n = 15), centre forwards (CF; n = 27). Opposition standard was categorised as Top (1st–4th), Middle (5th–9th), and Bottom (9th–13th) based on final league ranking of the study season. Each match location was classified as Home or Away. One way analysis of variance (ANOVA) and a multivariate ANOVA analysed the independent effect of PP, ML and OS on ACC and DEC efforts, and the interaction of all contextual factors, respectively. Acceleration efforts were affected by PP and ML. FB performed 22% more ACC than WM. All players performed 6% more ACC actions during home matches compared to away fixtures. DEC efforts were only affected by PP, with FB and CM executing 26% and 32% greater DEC efforts than CB, respectively. When playing against top or middle teams at home, CB, CM, and CF tended to perform more high-intensity actions than when playing away. In contrast, when playing against top teams at home, FB and WM performed fewer high-intensity actions than when playing away. Playing position and ML affected ACC and DEC actions but not OS

    The genetic profile of elite youth soccer players and its association with power and speed depends on maturity status

    Get PDF
    We investigated the association of multiple single nucleotide polymorphisms (SNPs) with athlete status and power/speed performance in elite male youth soccer players (ESP) and control participants (CON) at different stages of maturity. ESP (n = 535; aged 8–23 years) and CON (n = 151; aged 9–26 years) were genotyped for 10 SNPs and grouped according to years from predicted peak-height-velocity (PHV), i.e. pre- or post-PHV, to determine maturity status. Participants performed bilateral vertical countermovement jumps, bilateral horizontal-forward countermovement jumps, 20m sprints and modified 505-agility tests. Compared to CON, pre-PHV ESP demonstrated a higher ACTN3 (rs1815739) XX (‘endurance’) genotype frequency distribution, while post-PHV ESP revealed a higher frequency distribution of the PPARA (rs4253778) C-allele, AGT (rs699) GG genotype and NOS3 (rs2070744) T-allele (‘power’ genotypes/alleles). BDNF (rs6265) CC, COL5A1 (rs12722) CC and NOS3 TT homozygotes sprinted quicker than A-allele carriers, CT heterozygotes and CC homozygotes, respectively. COL2A1 (rs2070739) CC and AMPD1 (rs17602729) GG homozygotes sprinted faster than their respective minor allele carrier counterparts in CON and pre-PHV ESP, respectively. BDNF CC homozygotes jumped further than T-allele carriers, while ESP COL5A1 CC homozygotes jumped higher than TT homozygotes. To conclude, we have shown for the first time that pre- and post-PHV ESP have distinct genetic profiles, with pre-PHV ESP more suited for endurance, and post-PHV ESP for power and speed (the latter phenotypes being crucial attributes for post-PHV ESP). We have also demonstrated that power, acceleration and sprint performance were associated with five SNPs, both individually and in combination, possibly by influencing muscle size and neuromuscular activation
    corecore