13,939 research outputs found

    SNAP-8 post shutdown gamma radiation approximations

    Get PDF
    Detector responses were calculated for normalized sources in the Perkins and King energy group structure for a SNAP 8 power system on a NASA space station. Gamma decay rates were then calculated by using an expanded, updated list of isotopic decay data, and from these, actual detector responses were found for the SNAP 8 system. The results indicate that energy-dependent calculations must be made to determine decay gamma dose rates for actual reactor configurations. A simplified method for making these calculations has been devised

    Restoration of eucalypt grassy woodland: effects of experimental interventions on ground-layer vegetation

    Get PDF
    We report on the effects of broad-scale restoration treatments on the ground layer of eucalypt grassy woodland in south-eastern Australia. The experiment was conducted in two conservation reserves from which livestock grazing had previously been removed. Changes in biomass, species diversity, ground-cover attributes and life-form were analysed over a 4-year period in relation to the following experimental interventions: (1) reduced kangaroo density, (2) addition of coarse woody debris and (3) fire (a single burn). Reducing kangaroo density doubled total biomass in one reserve, but no effects on exotic biomass, species counts or ground cover attributes were observed. Coarse woody debris also promoted biomass, particularly exotic annual forbs, as well as plant diversity in one of the reserves. The single burn reduced biomass, but changed little else. Overall, we found the main driver of change to be the favourable growth seasons that had followed a period of drought. This resulted in biomass increasing by 67%, (mostly owing to the growth of perennial native grasses), whereas overall native species counts increased by 18%, and exotic species declined by 20% over the 4-year observation period. Strategic management of grazing pressure, use of fire where biomass has accumulated and placement of coarse woody debris in areas of persistent erosion will contribute to improvements in soil and vegetation condition, and gains in biodiversity, in the future.Funding and in-kind logistic support for this project was provided by the ACT Government as part of an Australian Research Council Linkage Grant (LP0561817; LP110100126). Drafts of the manuscript were read by Saul Cunningham and Ben Macdonald

    Counterions at Charged Cylinders: Criticality and universality beyond mean-field

    Full text link
    The counterion-condensation transition at charged cylinders is studied using Monte-Carlo simulation methods. Employing logarithmically rescaled radial coordinates, large system sizes are tractable and the critical behavior is determined by a combined finite-size and finite-ion-number analysis. Critical counterion localization exponents are introduced and found to be in accord with mean-field theory both in 2 and 3 dimensions. In 3D the heat capacity shows a universal jump at the transition, while in 2D, it consists of discrete peaks where single counterions successively condense.Comment: 4 pages, 3 figures; submitted to Phys. Rev. Lett. (2005

    Scaling and Universality in the Counterion-Condensation Transition at Charged Cylinders

    Full text link
    We address the critical and universal aspects of counterion-condensation transition at a single charged cylinder in both two and three spatial dimensions using numerical and analytical methods. By introducing a novel Monte-Carlo sampling method in logarithmic radial scale, we are able to numerically simulate the critical limit of infinite system size (corresponding to infinite-dilution limit) within tractable equilibration times. The critical exponents are determined for the inverse moments of the counterionic density profile (which play the role of the order parameters and represent the inverse localization length of counterions) both within mean-field theory and within Monte-Carlo simulations. In three dimensions (3D), correlation effects (neglected within mean-field theory) lead to an excessive accumulation of counterions near the charged cylinder below the critical temperature (condensation phase), while surprisingly, the critical region exhibits universal critical exponents in accord with the mean-field theory. In two dimensions (2D), we demonstrate, using both numerical and analytical approaches, that the mean-field theory becomes exact at all temperatures (Manning parameters), when number of counterions tends to infinity. For finite particle number, however, the 2D problem displays a series of peculiar singular points (with diverging heat capacity), which reflect successive de-localization events of individual counterions from the central cylinder. In both 2D and 3D, the heat capacity shows a universal jump at the critical point, and the energy develops a pronounced peak. The asymptotic behavior of the energy peak location is used to locate the critical temperature, which is also found to be universal and in accordance with the mean-field prediction.Comment: 31 pages, 16 figure

    Exploratory Analysis of Highly Heterogeneous Document Collections

    Full text link
    We present an effective multifaceted system for exploratory analysis of highly heterogeneous document collections. Our system is based on intelligently tagging individual documents in a purely automated fashion and exploiting these tags in a powerful faceted browsing framework. Tagging strategies employed include both unsupervised and supervised approaches based on machine learning and natural language processing. As one of our key tagging strategies, we introduce the KERA algorithm (Keyword Extraction for Reports and Articles). KERA extracts topic-representative terms from individual documents in a purely unsupervised fashion and is revealed to be significantly more effective than state-of-the-art methods. Finally, we evaluate our system in its ability to help users locate documents pertaining to military critical technologies buried deep in a large heterogeneous sea of information.Comment: 9 pages; KDD 2013: 19th ACM SIGKDD Conference on Knowledge Discovery and Data Minin

    Dynamics of Counterion Condensation

    Full text link
    Using a generalization of the Poisson-Boltzmann equation, dynamics of counterion condensation is studied. For a single charged plate in the presence of counterions, it is shown that the approach to equilibrium is diffusive. In the far from equilibrium case of a moving charged plate, a dynamical counterion condensation transition occurs at a critical velocity. The complex dynamic behavior of the counterion cloud is shown to lead to a novel nonlinear force-velocity relation for the moving plate.Comment: 5 pages, 1 ps figure included using eps

    A Titan exploration study: Science, technology and mission planning options, volume 1

    Get PDF
    Mission concepts and technology advancements that can be used in the exploration of the outer planet satellites were examined. Titan, the seventh satellite of Saturn was selected as the target of interest. Science objectives for Titan exploration were identified, and recommended science payloads for four basic mission modes were developed (orbiter, atmospheric probe, surface penetrator and lander). Trial spacecraft and mission designs were produced for the various mission modes. Using these trial designs as a base, technology excursions were then made to find solutions to the problems resulting from these conventional approaches and to uncover new science, technology and mission planning options. Several mission modes were developed that take advantage of the unique conditions expected at Titan. They include a combined orbiter, atmosphere probe and lander vehicle, a combined probe and surface penetrator configuration and concepts for advanced remote sensing orbiters

    Similarities and Differences in Nurse-Reported Care Rationing Between Critical Care, Surgical, and Medical Specialties

    Full text link
    Copyright © 2016 Wolters Kluwer Health, Inc. All rights reserved OBJECTIVE: The aim of this study was to determine the similarities and differences in elements of nursing care that are commonly rationed in the critical care, medical, and surgical specialties within an acute hospital environment. METHODS: Registered nurses who provide bedside nursing care within the medical, surgical, and critical specialties at a single center were invited to anonymously complete the self-administered MISSCARE questionnaire. The frequency of rationing for each individual care element within the 4 broader care groups (assessment, intervention—individual needs, intervention—basic care, and planning) of the MISSCARE questionnaire was determined. A mean score for each care group was also determined, and multiple regression analysis was undertaken to determine the demographic predictors of care rationing. RESULTS: Interventions related to basic care was the most frequently rationed care group in the critical care/emergency specialty (missed care mean of 50.1%), whereas planning was the most frequently rationed care group among both the medical (missed care mean of 43.6%) and surgical (missed care mean of 44.8%) specialties. Assessment was the least frequently rationed care group among all 3 specialties (missed care mean of 19.7%–26.7%). Length of time practicing as a registered nurse was an independent predictor of care rationing in the critical care/emergency specialty, and age older than 50 was an independent predictor in the medical specialty. CONCLUSIONS: There are numerous similarities and differences in care rationing between critical care, surgical, and medical nurses. The development and implementation of specialty-based strategies should be undertaken to reduce the incidence of nursing care rationing
    • …
    corecore