18,673 research outputs found

    Long-term EXOTIME photometry and follow-up spectroscopy of the sdB pulsator HS 0702+6043

    Full text link
    Pulsating subdwarf B (sdB) stars oscillate in short-period p-modes or long-period g-modes. HS0702+6043 (DW Lyn) is one of a few objects to show characteristics of both types and is hence classified as hybrid pulsator. It is one of our targets in the EXOTIME program to search for planetary companions around extreme horizontal branch objects. In addition to the standard exercise in asteroseismology to probe the instantaneous inner structure of a star, measured changes in the pulsation frequencies as derived from an O-C diagram can be compared to theoretical evolutionary timescales. Based on the photometric data available so far, we are able to derive a high-resolution frequency spectrum and to report on our efforts to construct a multi-season O-C diagram. Additionally, we have gathered time-resolved spectroscopic data in order to constrain stellar parameters and to derive mode parameters as well as radial and rotational velocities.Comment: 2 pages, JENAM 2008 proceedings, to be published in 'Communications in Asteroseismology', 15

    Satisfiability of CTL* with constraints

    Full text link
    We show that satisfiability for CTL* with equality-, order-, and modulo-constraints over Z is decidable. Previously, decidability was only known for certain fragments of CTL*, e.g., the existential and positive fragments and EF.Comment: To appear at Concur 201

    Constraint checking during error recovery

    Get PDF
    The system-level software onboard a spacecraft is responsible for recovery from communication, power, thermal, and computer-health anomalies that may occur. The recovery must occur without disrupting any critical scientific or engineering activity that is executing at the time of the error. Thus, the error-recovery software may have to execute concurrently with the ongoing acquisition of scientific data or with spacecraft maneuvers. This work provides a technique by which the rules that constrain the concurrent execution of these processes can be modeled in a graph. An algorithm is described that uses this model to validate that the constraints hold for all concurrent executions of the error-recovery software with the software that controls the science and engineering activities of the spacecraft. The results are applicable to a variety of control systems with critical constraints on the timing and ordering of the events they control

    Memory erasure in small systems

    Full text link
    We consider an overdamped nanoparticle in a driven double-well potential as a generic model of an erasable one-bit memory. We study in detail the statistics of the heat dissipated during an erasure process and show that full erasure may be achieved by dissipating less heat than the Landauer bound. We quantify the occurrence of such events and propose a single-particle experiment to verify our predictions. Our results show that Landauer's principle has to be generalized at the nanoscale to accommodate heat fluctuations.Comment: 4 pages, 4 figure

    Quasi-deterministic transport of Brownian particles in an oscillating periodic potential

    Full text link
    We consider overdamped Brownian dynamics in a periodic potential with temporally oscillating amplitude. We analyze the transport which shows effective diffusion enhanced by the oscillations and derive approximate expressions for the diffusion coefficient. Furthermore we analyze the effect of the oscillating potential on the transport if additionally a constant force is applied. We show the existence of synchronization regimes at which the deterministic dynamics is in resonance with the potential oscillations giving rise to transport with extremely low dispersion. We distinguish slow and fast oscillatory driving and give analytical expressions for the mean velocity and effective diffusion.Comment: submitted: Feb 12th, 201

    Measures of galaxy dust and gas mass with Herschel photometry and prospects for ALMA

    Full text link
    (Abridged) Combining the deepest Herschel extragalactic surveys (PEP, GOODS-H, HerMES), and Monte Carlo mock catalogs, we explore the robustness of dust mass estimates based on modeling of broad band spectral energy distributions (SEDs) with two popular approaches: Draine & Li (2007, DL07) and a modified black body (MBB). As long as the observed SED extends to at least 160-200 micron in the rest frame, M(dust) can be recovered with a >3 sigma significance and without the occurrence of systematics. An average offset of a factor ~1.5 exists between DL07- and MBB-based dust masses, based on consistent dust properties. At the depth of the deepest Herschel surveys (in the GOODS-S field) it is possible to retrieve dust masses with a S/N>=3 for galaxies on the main sequence of star formation (MS) down to M(stars)~1e10 [M(sun)] up to z~1. At higher redshift (z<=2) the same result is achieved only for objects at the tip of the MS or lying above it. Molecular gas masses, obtained converting M(dust) through the metallicity-dependent gas-to-dust ratio delta(GDR), are consistent with those based on the scaling of depletion time, and on CO spectroscopy. Focusing on CO-detected galaxies at z>1, the delta(GDR) dependence on metallicity is consistent with the local relation. We combine far-IR Herschel data and sub-mm ALMA expected fluxes to study the advantages of a full SED coverage.Comment: Accepted for publication in Astronomy and Astrophysics. Some figures have degraded quality for filesize reason

    Irreversibility and the arrow of time in a quenched quantum system

    Get PDF
    Irreversibility is one of the most intriguing concepts in physics. While microscopic physical laws are perfectly reversible, macroscopic average behavior has a preferred direction of time. According to the second law of thermodynamics, this arrow of time is associated with a positive mean entropy production. Using a nuclear magnetic resonance setup, we measure the nonequilibrium entropy produced in an isolated spin-1/2 system following fast quenches of an external magnetic field and experimentally demonstrate that it is equal to the entropic distance, expressed by the Kullback-Leibler divergence, between a microscopic process and its time-reverse. Our result addresses the concept of irreversibility from a microscopic quantum standpoint.Comment: 8 pages, 7 figures, RevTeX4-1; Accepted for publication Phys. Rev. Let
    corecore