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ABSTRACT

The system-level software onboard a spacecraft is responsible for recovery from communi-
cation, power, thermal, and computer-health anomalies that may occur. The recovery must occur
without disrupting any critical scientific or engineering activity that is executing at the time of the
error. Thus, the error-recovery software may have to execute concurrently with the ongoing
acquisition of scientific data or with spacecraft maneuvers. This work provides a technique by
which the rules that constrain the concurrent execution of these processes can be modeled in a
graph. An algorithm is described that uses this model to validate that the constraints hold for all
concurrent executions of the error-recovery software with the software that controls the science and
engineering activities of the spacecraft. The results are applicable to a variety of control systems
with critical constraints on the timing and ordering of the events they control.

INTRODUCTION

This paper presents a technique for checking constraints on the asynchronous software
processes involved in error recovery aboard spacecraft. These autonomous processes are
constrained at the event level by timing, precedence, and data-dependency rules. Violations of
these constraints can jeopardize the spacecraft.

Analyzing all the potential process interactions during spacecraft error recovery is difficult and
tedious. A single failure on the spacecraft may at times trigger several different processes whose
actions must then be compatible. More than one failure may also occur at a time, causing several
error-recovery processes to be invoked. In addition, there is at any time a unique sequence of
uplinked commands (instructions to subsystems) executing on the spacecraft. These commands
must also be compatible with the actions of the error-recovery software.

The spacecraft software is highly interactive in terms of the degree of message-passing among
system components, the need to respond in real-time to monitoring of the hardware and
environment, and the complex timing issues among parts of the system. Opportunities for
unanticipated process interactions will grow in future missions with advances in hardware,
distributed architectures, and "smart" science instruments.

As the opportunity for process concurrency increases, the ability to perform constraint checking
on these concurrent processes also must increase. In order to detect hazardous error-recovery
scenarios, an improved capability to model and analyze precedence, timing, and data-dependency
constraints is needed.
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Timing constraintsusuallyhavebeendefinedin termsof periodic actions or deadline
requirements. This definition is inadequate to model the timing constraints on spacecraft
commands. The work described here extends the definition of timing constraints to represent
allowable intervals between commands and the execution times of activities initiated by commands.
These extensions of recent research results allow more accurate modeling of the required ordering
and timing relationships among commands.

The model represents timing, precedence, and data-dependency constraints on spacecraft
commands by means of a labeled graph in which the nodes represent commands and the edges
represent constraints on those commands. This constraints graph, together with a number of
potentially concurrent software processes (including the error-recovery processes and the current
sequence of uplinked commands), are input to an algorithm called the Constraints Checker (see
Fig. 1). The algorithm tests each edge (representing a constraint) in the constraints graph to
determine whether any interleaving of the commands in those processes can fail to satisfy the
constraint.

Any documented constraint which is not satisfied in every interleaving of the concurrent
processes is recorded in a file for later analysis. The analysis may lead to a change in the
documented constraint or to a change in the software. The Constraints Checker is then run again
on the corrected input to verify that the constraint can no longer be violated during error recovery.

This work was performed in the context of the Galileo spacecraft, an interplanetary probe
currently journeying to Jupiter. Preliminary results were reported in [8] and additional results in

[9]. Ongoing research indicates that the results are applicable to a variety of asynchronous
systems with precedence and critical timing constraints.

ERROR RECOVERY

System-level software onboard the spacecraft monitors and responds to failures. The standard
definitions are used here of a failure as an event in which the behavior of the system deviates from

its specification and of an error as an incorrect state of the system which must be remedied [12].
The error-recovery processes include those that respond to a loss of uplink or downlink communi-
cation, to thermal, power, or pressure anomalies, and to indicators regarding the health of the

computers.

Instructions called commands instruct the different subsystems of the spacecraft to take specific

actions at specific times. Error-recovery processes, composed of commands, are invoked in
response to a detected failure. Individual commands are also assembled into groups of time-tagged
commands, called command sequences, which are periodically sent to the spacecraft from the
ground. Command sequences are stored temporarily in the spacecraft's memory until the time
comes for each command to execute.

Some command sequences are so critical to the success or failure of the spacecraft's mission that
they are labeled critical sequences. The command sequences used at launch or to direct Galileo's
science and engineering activities at Jupiter are examples of critical sequences.

Should a failure occur during a non-critical sequence, a computer may cancel its activity. A

critical sequence, however, must continue to execute even during error recovery. This requirement
for concurrent execution of a critical sequence and error recovery drove much of the work

presented here.

195



196

t_

.m

e_

t_

t_

el

¢,#

m

m

ell

t_

em



Constraints are imposed on the commands in an effort to preclude conflicting interactions among

the possibly concurrent processes. Some commands can interfere with the effect of other
commands ff they are executed too closely or too far apart in time. Certain commands must
precede or follow other commands to accomplish the desired action. Some commands change
the values of parameters used by other commands. Commands relating to power or propellant
usage, to temperature or attitude control, to spacecraft or data modes, can endanger the collection
of scientific data, a subsystem, or the spacecraft if intervening commands issued by another
process leave the spacecraft in an unexpected state.

To restrict the interactions that are allowed, constraints are placed on the interleavings of
commands. The flight rules as well as other documented system and operational specifications
forbid certain interactions as unsafe. The constraints also describe ordering (precedence) and
timing relationships between commands that must be maintained even when processes containing
those commands execute concurrently.

Detecting undesirable interactions involving error-recovery processes is especially important
since error-recovery software usually executes only when a failure has already been detected
onboard the spacecraft. If a critical sequence is executing, the software must quickly (thus,
autonomously) reconfigure the spacecraft to the state that is the precondition for the next activity in
the sequence.

In addition, because error-recovery software is responsive, it is asynchronous [3]. It may begin
execution at any time. In fact, because the spacecraft often is most taxed during the most critical
science activity, error-recovery software is most likely to execute when the spacecraft is active.
Error-recovery capabilities not only increase the number of concurrently executing processes, but
also tend to be executed at the busiest (in terms of process interactions) times. It is also the case
that hardware failures due to physical damage tend to be clustered in time [10].

APPROACH

The problem addressed here is how to check that the concurrent execution of the asynchronous
processes that cooperate during error recovery satisfy the precedence constraints, maintain data-

dependency (read/write) constraints, and satisfy the timing constraints.

The model which was developed allows the command's duration (the length of time required
to execute the activity initiated by a command) to be attached to a command. Thus, a constraint of

the form, "If command cj occurs, then the activity initiated by the occurrence of commmand ci
must first have completed," can be represented. This type of constraint is common on both
spacecraft and other real-time systems. If the duration of the commanded activity is variable, it is
limited by a worst-case time which is represented in the model.

The model takes into account both precedence constraints and timing constraints. Precedence
and timing are fundamentally different in that precedence does not require a notion of duration
[11]. Most methods that currently exist to model precedence constraints do not incorporate timing
requirements and so are inadequate for modeling the timing constraints on spacecraft. Similarly,
many techniques that are currently available to model timing constraints tend to ignore precedence
constraints.

A wide variety of powerful formalisms exists to model the specifications and behavior of real-
time systems. See, e.g., [1, 4, 5, 6, 7, 13, 14, 15]. However, none of the available methods
readily translates to the domain of validating error recovery on spacecraft. Some techniques
consider both timing and precedence constraints but define timing constraints only in terms of
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periodicevents(e.g.,samplingrates),fixedexecutiontimesfor events,anddeadlineor timeliness
requirements.Thisprovidestoolimiteda modelfor theaperiodicandintervaltimingconstraintson
spacecraftcommands.

Requirementsareoftenmodeledin termsof a lower timebound(afterwhichaneventmay

occur) and an upper time bound (by which the event must occur). In contrast, on the spacecraft
there is often a need to model an operational constraint such as an interval within which an event is
permitted to occur (but perhaps won't) and outside of which interval the event must never occur.
This distinction between a "hard" time constraint (an interval within which the action should be
taken) and a "soft" time constraint (an interval within which the action may occur) [2] is often
absent in formal models.

The work described here brings together the study of real-time constraints with the study of
precedence and data-dependency constraints.

MODELING THE CONSTRAINTS

The constraints that exist at the command level on the asynchronous execution of the spacecraft
error recovery are modeled via a constraints graph. A constraints graph is a directed graph

G=(V,E) in which each node ci, cj, E V is labeled by a command and each edge e e E is labeled by
a constraint. The edge (ci, cj) is drawn as in Fig. 2.

Constraint on the ordering
or timing of commands

Figure 2. Modeling an Intercommand Constraint
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Intercommandconstraintsarerulesthatgoverntheorderingor timing relationshipsbetween
commands.Therearethreemaintypesof intercommandconstraints:timing constraints,
precedenceconstraints,anddata-dependencyconstraints.Fig. 3 presentsanexampleof eachof
thesethreeconstrainttypes.

Intercommandtimingconstraintsaresafetyproperties.Theyimposeaquantitativetemporal
relationshipbetweenthecommandsbyassertingthat"everyci can only occur with timing relation-

ship _ to cj."

Precedence constraints enforce an ordering on the commands and so involve functional
correctness, a concern of safety properties. Precedence constraints also involve liveness properties

since they assert that if one command occurs, then another command must precede it: "If cj occurs,
then a ci must precede it."

If a timing constraint exists between commands ci and cj, either command can legally occur

alone. However, if a precedence constraint exists requiring command ci to precede command cj,

then cj cannot occur in isolation from ci.

Data-dependency constraints involve restrictions placed on the order of commands when two or
more processes access the same variable and at least one process changes the value of the variable.
In such cases a concurrent execution of the processes can lead to a result different from the
sequential execution of the processes. To forestall the data inconsistency that could result from this,
a data-dependency constraint is used to specify the order in which the commands that read/write the
variable must occur. Such a data-dependency constraint is represented as a precedence constraint.

CONSTRAINT CHECKING

The constraints graph and a set of processes (time-tagged lists of commands) are input to the
Constraints Checker. The Constraints Checker fixes one process' timeline and determines the
range of start times that the fixed timeline and the constraint represented by each edge impose on
the other processes. Each edge type is associated with an algebraic predicate which relates the time
of issuance of the commands which are the edge's endpoints to the constraint represented by the

edge. The Constraints Checker tests whether the appropriate predicate holds for each edge in the
constraints graph. An edge which fails to satisfy the required predicate is flagged. In this case
some scheduling of the processes can cause the constraint represented by that edge to be violated.

The Constraints Checker makes an assertion about the allowable start times of the process
whose timeline is not fixed. It makes this assertion based on the edge type currently being
surveyed, on the constraint represented by the edge, on the offset between the processes' start

times and their issuances of ci and cj, and on the fixed start time of one process. If the Constraint
Checker's assertion concerning when the other processes should start is inconsistent with the user-
provided range of start times, then the edge is flagged.

If the edge is flagged due to erroneous information in one of the edge or node labels, the user
can readily correct the input data and run the Constraints Checker again to verify the adequacy of
the correction. If the edge is flagged due to a problem with the existing error-recovery response,
the data output with the flagged edge helps the user identify the problem. The user responds by
shifting the processes' timelines or by curtailing the concurrency that allowed the intercommand
constraint to be violated. The goal is to adjust or limit the concurrent execution of the processes so
that the edge will not be flagged in a subsequent run.
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(a)Timing Constraint:

Documentedconstraint:"The time separation between powering on the S-Band Transmitter and
powering on the X-Band Transmitter shall be either less than one-half minute or greater then 6
minutes."

t I = 30 sec

t 2 = 360 sec

edge type = outside-interval

(b) Precedence Constraint:

Documented constraint: "Spin Detector B can only be powered on after Spin Detector A is turned
off. ! !

@
(c) Data-Dependency Constraint:

Documented constraint: "The Commanded-Maneuver-Status Variable must be updated by the

command sequence before the thruster burn. The error-recovery process reads the
Commanded-Maneuver-Status variable in case of a thruster bum failure. The update of the variable

by the command sequence must precede the use of the variable by the error-recovery process."

Figure 3. Examples of lntercommand Constraints
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After all theedgeshavebeensurveyed,theConstraintsCheckercomputesfor everydistinct
pair of processes the range of safe start times of one process relative to the other. Within this time
interval the intercommand constraints are satisfied.

RESULTS

The error-recovery scenarios chosen to evaluate the Constraints Checker involved failures
during the execution of the critical sequence of commands controlling the Galileo spacecraft's
arrival at Jupiter. The activities of the processes that must cooperate during error recovery are
highly constrained due to the complexity and time criticality of the engineering and science activity
during the planetary encounter. There are thus many opportunities for constraint violations during

error recovery.

Experience with this method indicates that the Constraint Checker's major benefit is early
detection of significant inconsistencies between the design and the constraints. The error-recovery
scenario that was analyzed addressed the complicated timing issues involved when a critical
sequence of commands had to continue execution during recovery from a hardware anomaly.
The constraints graph input to the Constraints Checker consisted of 40 nodes and 40 edges (20
precedence and data-dependency edges and 20 timing edges).

The results were as follows. The Constraints Checker flagged seven intercommand constraint

violations (four precedence constraints and three timing constraints). One precedence edge was
flagged because a global variable could be used before it was updated. Two other edges were
flagged because a specific command that was required to precede another did not occur. (One of
these violations was later traced to outdated documentation). Another flagged edge was, in fact,

not violated but appeared to be, since the associated command appeared six hours earlier.

Two of the three timing edges that were flagged involved a timing discrepancy between the
requirements and the code. The third timing edge that was flagged resulted from the unforeseen
consequence of a data field taking on a value which was possible, but forbidden in operations.

Another eight errors, involving incorrect or inconsistent documentation, were identified during
construction of the constraints graph. Seven of these eight errors were significant enough to have
caused inaccuracies in the constraints graph and in the results of the Constraints Checker.

The intercommand constraint violations flagged by the Constraints Checker involved either

discrepancies between the constraints and the code or unforeseen consequences of unlikely but
possible error-recovery scenarios. The Constraints Checker appears to be useful in enhancing the
developers' ability to visualize abnormal scenarios and in flagging constraint violations that occur
only in some subset of the possible error-recovery responses.

The code analyzed here was a baseline version, rather than the most current flight version.
This choice was made in order to provide code that had been well thought out but not tested. It is
at this intermediate stage of the development process, when the intercommand constraints have
been initially documented but the details of the design and the timing are still evolving, that the
Constraints Checker may be most effective.

A version of the Constraints Checker underwent initial development for use on the later-canceled
Comet Rendezvous/Asteroid Flyby (CRAF) spacecraft. The Constraints Checker's function was to
serve as a software-development tool to analyze and validate scenarios involving the interactions
among concurrent processes during error recovery.
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POTENTIAL APPLICATIONS

The method outlined here is useful for addressing related problems in domains other than
spacecraft. A primary concern in evaluating the safety of a complex, embedded system is whether

error recovery can result in the violation of constraints on that system. More generally, the design
of event-driven systems often involves analyzing whether the concurrent execution of processes
with unpredictable start times can jeopardize the system. Such issues are readily investigated with
this method. The Constraints Checker can also function as an extension to existing simulation or
CASE tools to provide more accurate validation of complex timing constraints.

The Constraints Checker is also well suited to operational situations in which a portion of the

control software is regularly replaced. On the spacecraft the sequences of commands are examples
of this "temporary" software. On the space station, for example, procedures to sequence activities
outside the astronauts' responsibilities will be regularly uplinked from the ground. The proposed
method could ease the operational difficulties of quickly checking that new or temporary software
is safe and will not conflict with the "permanent" software.

Commercial applications of this method could range from safety-critical process-control systems
to event-driven flight control or command-and-control systems. Current tools often model and test

only periodic or deadline timing constraints. The proposed method offers the capability to quickly
and accurately model and check that even aperiodic and interval constraints among events will
always hold in the system.

CONCLUSIONS

This paper has shown how to construct a constraints graph that models precedence, timing, and
data-dependency constraints. The constraints graph provides a means of visualizing the
intercommand constraints that must be satisfied by every concurrent execution of processes during
error recovery. This paper has also described a constraint-checking algorithm that, given a
constraints graph and a set of processes, detects violations of the modeled constraints.

The Constraints Checker is designed specifically to help answer the question of whether existing
system-level error recovery is adequate. It offers a flexible, embeddable, and relatively simple
alternative to simulation of error-recovery scenarios. In the context of the spacecraft, the algorithm
identifies the unexpected effects resulting from the interleaving of error-recovery processes and
mission-critical sequences of commands. In a broader context, the research presented here is part
of an ongoing effort to investigate the behavior of concurrently executing processes subject to
precedence and timing constraints.
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