9,824 research outputs found

    Transmission loss predictions for dissipative silencers of arbitrary cross section in the presence of mean flow

    Get PDF
    A numerical technique is developed for the analysis of dissipative silencers of arbitrary, but axially uniform, cross section. Mean gas flow is included in a central airway which is separated from a bulk reacting porous material by a concentric perforate screen. The analysis begins by employing the finite element method to extract the eigenvalues and associated eigenvectors for a silencer of infinite length. Point collocation is then used to match the expanded acoustic pressure and velocity fields in the silencer chamber to those in the inlet and outlet pipes. Transmission loss predictions are compared with experimental measurements taken for two automotive dissipative silencers with elliptical cross sections. Good agreement between prediction and experiment is observed both without mean flow and for a mean flow Mach number of 0.15. It is demonstrated also that the technique presented offers a considerable reduction in computational expenditure when compared to a three dimensional finite element analysis

    Experimental methodologies to support aircraft icing analysis

    Get PDF
    The experimental methodologies are illustrated by graphs, charts and line drawings. Typical ultrasonic echo signals for dry and wet ice growth, ice accretion rates for various tunnel configurations, the experimental configuration for flight tests of the ultrasonic measuring system and heat balance models used to predict ice growth are among the topics that are illustrated and briefly discussed

    Experimental measurements of heat transfer from an iced surface during artificial and natural cloud icing conditions

    Get PDF
    The heat transfer behavior of accreting ice surfaces in natural (flight test) and simulated (wind tunnel) cloud icing conditions were studied. Observations of wet and dry ice growth regimes as measured by ultrasonic pulse echo techniques were made. Observed wet and dry ice growth regimes at the stagnation point of a cylinder were compared with those predicted using a quasi steady state heat balance model. A series of heat transfer coefficients were employed by the model to infer the local heat transfer behavior of the actual ice surfaces. The heat transfer in the stagnation region was generally inferred to be higher in wind tunnel icing tests than in natural flight icing conditions

    Influence of Orchard Soil Management on Fruit Bud Development and Formation as Found in the Apple

    Get PDF
    Since this is merely a progress report on fruit bud development, it is impossible to draw definite conclusions, as insufficient data have been compiled

    A Study of the Formation and Development of the Flower Buds of Jonathan and Grimes Golden in Relation to Diferent Types (Clover Sod, Blue Grass Sod, Clover Crop, and Clean Tillage) of Soil Management

    Get PDF
    The data so far obtained are insufficient to warrant conclusions as to what is true as a rule. This summary simply states briefly what was found during 1916 and 1917 concerning the formation and development of flower buds in these two varieties of apples, growing on plots representing four types of soil management in the Council Bluffs orchard humus Experiments of the Sections of Pomology and Soils of the Iowa Experiment Station

    Ultrasonic techniques for aircraft ice accretion measurement

    Get PDF
    Results of tests to measure ice growth in natural (flight) and artificial (icing wind tunnel) icing conditions are presented. Ice thickness is measured using an ultrasonic pulse-echo technique. Two icing regimes, wet and dry ice growth, are identified and the unique ultrasonic signal characteristics associated with these different types of ice growth are described. Ultrasonic measurements of ice growth on cylinders and airfoils exposed to artificial and natural icing conditions are presented. An accuracy of plus or minus 0.5 mm is achieved for ice thickness measurement using the pulse-echo technique. The performance of two-probe type ice detectors is compared to the surface mounted ultrasonic system. The ultrasonically measured ice accretion rates and ice surface condition (wet or dry) are used to compare the heat transfer characteristics for flight and icing wind tunnel environments. In general the heat transfer coefficient is inferred to be higher in the wind tunnel environment, not likely due to higher freestream turbulence levels. Finally, preliminary results of tests to measure ice growth on airfoil using an array of ultrasonic transducers are described. Ice profiles obtained during flight in natural icing conditions are shown and compared with mechanical and stereo image measurements

    Evolving database systems : a persistent view

    Get PDF
    Submitted to POS7 This work was supported in St Andrews by EPSRC Grant GR/J67611 "Delivering the Benefits of Persistence"Orthogonal persistence ensures that information will exist for as long as it is useful, for which it must have the ability to evolve with the growing needs of the application systems that use it. This may involve evolution of the data, meta-data, programs and applications, as well as the users' perception of what the information models. The need for evolution has been well recognised in the traditional (data processing) database community and the cost of failing to evolve can be gauged by the resources being invested in interfacing with legacy systems. Zdonik has identified new classes of application, such as scientific, financial and hypermedia, that require new approaches to evolution. These applications are characterised by their need to store large amounts of data whose structure must evolve as it is discovered by the applications that use it. This requires that the data be mapped dynamically to an evolving schema. Here, we discuss the problems of evolution in these new classes of application within an orthogonally persistent environment and outline some approaches to these problems.Postprin

    Regolith production and transport at the Susquehanna Shale Hills Critical Zone Observatory, Part 2: Insights from meteoric 10Be

    Get PDF
    Regolith-mantled hillslopes are ubiquitous features of most temperate landscapes, and their morphology reflects the climatically, biologically, and tectonically mediated interplay between regolith production and downslope transport. Despite intensive research, few studies have quantified both of these mass fluxes in the same field site. Here we present an analysis of 87 meteoric 10Be measurements from regolith and bedrock within the Susquehanna Shale Hills Critical Zone Observatory (SSHO), in central Pennsylvania. Meteoric 10Be concentrations in bulk regolith samples (n=73) decrease with regolith depth. Comparison of hillslope meteoric 10Be inventories with analyses of rock chip samples (n=14) from a 24 m bedrock core confirms that >80% of the total inventory is retained in the regolith. The systematic downslope increase of meteoric 10Be inventories observed at SSHO is consistent with 10Be accumulation in slowly creeping regolith (∌ 0.2 cm yr-1). Regolith flux inferred from meteoric 10Be varies linearly with topographic gradient (determined from high-resolution light detection and ranging-based topography) along the upper portions of hillslopes at SSHO. However, regolith flux appears to depend on the product of gradient and regolith depth where regolith is thick, near the base of hillslopes. Meteoric 10Be inventories at the north and south ridgetops indicate minimum regolith residence times of 10.5 ± 3.7 and 9.1 ± 2.9 ky, respectively, similar to residence times inferred from U-series isotopes in Ma et al. (2013). The combination of our results with U-series-derived regolith production rates implies that regolith production and erosion rates are similar to within a factor of two on SSHO hillcrests. ©2013. American Geophysical Union. All Rights Reserved
    • 

    corecore