32,628 research outputs found
Spectra of D-branes with Higgs vevs
In this paper we continue previous work on counting open string states
between D-branes by considering open strings between D-branes with nonzero
Higgs vevs, and in particular, nilpotent Higgs vevs, as arise, for example,
when studying D-branes in orbifolds. Ordinarily Higgs vevs can be interpreted
as moving the D-brane, but nilpotent Higgs vevs have zero eigenvalues, and so
their interpretation is more interesting -- for example, they often correspond
to nonreduced schemes, which furnishes an important link in understanding old
results relating classical D-brane moduli spaces in orbifolds to Hilbert
schemes, resolutions of quotient spaces, and the McKay correspondence. We give
a sheaf-theoretic description of D-branes with Higgs vevs, including nilpotent
Higgs vevs, and check that description by noting that Ext groups between the
sheaves modelling the D-branes, do in fact correctly count open string states.
In particular, our analysis expands the types of sheaves which admit on-shell
physical interpretations, which is an important step for making derived
categories useful for physics.Comment: 46 pages, LaTeX; v2: typos fixed; v3: more typos fixe
Weak Coupling, Degeneration and Log Calabi-Yau Spaces
We establish a new weak coupling limit in F-theory. The new limit may be
thought of as the process in which a local model bubbles off from the rest of
the Calabi-Yau. The construction comes with a small deformation parameter
such that computations in the local model become exact as . More
generally, we advocate a modular approach where compact Calabi-Yau geometries
are obtained by gluing together local pieces (log Calabi-Yau spaces) into a
normal crossing variety and smoothing, in analogy with a similar cutting and
gluing approach to topological field theories. We further argue for a
holographic relation between F-theory on a degenerate Calabi-Yau and a dual
theory on its boundary, which fits nicely with the gluing construction.Comment: 59 pp, 2 figs, LaTe
Integral Constraints On cosmological Perturbations and their Energy
We show the relation between Traschen's integral equations and the energy,
and ``position of the centre of mass'', of the matter perturbations in a
Robertson-Walker spacetime. When the perturbations are ``localised'' we get a
set of integral constraints that includes hers. We illustrate them on a simple
example.Comment: 19 pages, Tex file, submitted to Classical and Quantum Gravit
Temporal evolution of mesoscopic structure of some non-Euclidean systems using a Monte Carlo model
A Monte Carlo based computer model is presented to comprehend the contrasting
observations of Mazumder et al. [Phys. Rev. Lett. 93, 255704 (2004) and Phys.
Rev. B 72, 224208 (2005)], based on neutron-scattering measurements, on
temporal evolution of effective fractal dimension and characteristic length for
hydration of cement with light and heavy water. In this context, a theoretical
model is also proposed to elucidate the same.Comment: 31 Pages, 13 Figure
Combinatorial synthesis and high-throughput photopotential and photocurrent screening of mixed-metal oxides for photoelectrochemical water splitting
A high-throughput method has been developed using a commercial piezoelectric inkjet printer for synthesis and characterization of mixed-metal oxide photoelectrode materials for water splitting. The printer was used to deposit metal nitrate solutions onto a conductive glass substrate. The deposited metal nitrate solutions were then pyrolyzed to yield mixed-metal oxides that contained up to eight distinct metals. The stoichiometry of the metal oxides was controlled quantitatively, allowing for the creation of vast libraries of novel materials. Automated methods were developed to measure the open-circuit potentials (Eoc), short-circuit photocurrent densities (Jsc), and current density vs. applied potential (J–E) behavior under visible light irradiation. The high-throughput measurement of Eoc is particularly significant because open-circuit potential measurements allow the interfacial energetics to be probed regardless of whether the band edges of the materials of concern are above, close to, or below the values needed to sustain water electrolysis under standard conditions. The Eoc measurements allow high-throughput compilation of a suite of data that can be associated with the composition of the various materials in the library, to thereby aid in the development of additional screens and to form a basis for development of theoretical guidance in the prediction of additional potentially promising photoelectrode compositions
Collisional decay of a strongly driven Bose-Einstein condensate
We study the collisional decay of a strongly driven Bose-Einstein condensate
oscillating between two momentum modes. The resulting products of the decay are
found to strongly deviate from the usual s-wave halo. Using a stochastically
seeded classical field method we simulate the collisional manifold. These
results are also explained by a model of colliding Bloch states.Comment: 4 pages, 4 figure
The QCD phase diagram from analytic continuation
We present the crossover line between the quark gluon plasma and the hadron
gas phases for small real chemical potentials. First we determine the effect of
imaginary values of the chemical potential on the transition temperature using
lattice QCD simulations. Then we use various formulas to perform an analytic
continuation to real values of the baryo-chemical potential. Our data set
maintains strangeness neutrality to match the conditions of heavy ion physics.
The systematic errors are under control up to MeV. For the
curvature of the transition line we find that there is an approximate agreement
between values from three different observables: the chiral susceptibility,
chiral condensate and strange quark susceptibility. The continuum extrapolation
is based on 10, 12 and 16 lattices. By combining the analysis for these
three observables we find, for the curvature, the value .Comment: 14 pages, 4 figures, revised versio
Test and evaluate passive orbital disconnect struts (PODS 3)
The objectives of the Passive Orbital Disconnect Struts (PODS) test are to evaluate modal resonance of the PODS-III supports to obtain engineering data required for use of PODS-III on flight systems; determine possible performance improvements in large LO2/LH2 space applications. (1) Modal Vibration Tests. A modal resonance survey is performed on a set of six PODS-III struts assembled in a dewar simulator. The survey conditions simulate both launch and orbital loadings of the struts. The orbital load range spans a full to an empty tank. The frequencies surveyed cover the range consistent with Shuttle qualification requirements and the principal resonant modes of the strut system. (2) Benefit study. The benefit of using PODS-III supports on OTV and Space Station LO sub 2 and LH sub 2 reference tanks was compared to nondisconnect supports. Four LO sub 2 and LH sub 2 tanks were studied under various conditions: (1) holding the launch resonance at 35 Hz and varying the orbit resonance; (2) analyzing both full and emtpy tanks at launch; (3) varying orbit boundary temperaure; (4) varying the number of struts; (5) varying orbit times; and (6) using or not using vapor cooling
- …