10,555 research outputs found
Detection of early osteogenic commitment in primary cells using Raman spectroscopy
Major challenges in the development of novel implant surfaces for artificial joints include osteoblast heterogeneity and the lack of a simple and sensitive in vitro assay to measure early osteogenic responses. Raman spectroscopy is a label-free, non-invasive and non-destructive vibrational fingerprinting optical technique that is increasingly being applied to detect biochemical changes in cells. In this study Raman spectroscopy has been used to obtain bone cell-specific spectral signatures and to identify any changes therein during osteoblast commitment and differentiation of primary cells in culture. Murine calvarial osteoblasts (COBs) were extracted and cultured and studied by Raman spectroscopy over a 14 day culture period. Distinct osteogenic Raman spectra were identified after 3 days of culture with strong bands detected for mineral: phosphate ν3 (1030 cm−1) and B-type carbonate (1072 cm−1), DNA (782 cm−1) and collagen matrix (CH2 deformation at 1450 cm−1) and weaker phosphate bands (948 and 970 cm−1). Early changes were detected by Raman spectroscopy compared to a standard enzymatic alkaline phosphatase (ALP) assay and gene expression analyses over this period. Proliferation of COBs was confirmed by fluorescence intensity measurements using the Picogreen dsDNA reagent. Changes in ALP levels were evident only after 14 days of culture and mRNA expression levels for ALP, Col1a1 and Sclerostin remained constant during the culture period. Sirius red staining for collagen deposition also revealed little change until day 14. In contrast Raman spectroscopy revealed the presence of amorphous calcium phosphate (945–952 cm−1) and carbonated apatite (957–962 cm−1) after only 3 days in culture and octacalcium phosphate (970 cm−1) considered a transient mineral phase, was detected after 5 days of COBs culture. PCA analysis confirmed clear separation between time-points. This study highlights the potential of Raman spectroscopy to be utilised for the early and specific detection of proliferation and differentiation changes in primary cultures of bone cells
Vitamin K catabolite inhibition of ovariectomy-induced bone loss: Structure–activity relationship considerations
The potential benefit of vitamin K as a therapeutic in osteoporosis is controversial and the vitamin K regimen being used clinically (45 mg/day) employs doses that are many times higher than required to ensure maximal gamma‐carboxylation of the vitamin K‐dependent bone proteins. We therefore tested the hypothesis that vitamin K catabolites, 5‐carbon (CAN5C) and 7‐carbon carboxylic acid (CAN7C) aliphatic side‐chain derivatives of the naphthoquinone moiety exert an osteotrophic role consistent with the treatment of osteoporosis
Non-Chern-Simons Topological Mass Generation in (2+1) Dimensions
By dimensional reduction of a massive BF theory, a new topological field
theory is constructed in (2+1) dimensions. Two different topological terms, one
involving a scalar and a Kalb-Ramond fields and another one equivalent to the
four-dimensional BF term, are present. We constructed two actions with these
topological terms and show that a topological mass generation mechanism can be
implemented. Using the non-Chern-Simons topological term, an action is proposed
leading to a classical duality relation between Klein-Gordon and Maxwell
actions. We also have shown that an action in (2+1) dimensions with the
Kalb-Ramond field is related by Buscher's duality transformation to a massive
gauge-invariant Stuckelberg-type theory.Comment: 8 pages, no figures, RevTE
On the Validity of the Tomonaga Luttinger Liquid Relations for the One-dimensional Holstein Model
For the one-dimensional Holstein model, we show that the relations among the
scaling exponents of various correlation functions of the Tomonaga Luttinger
liquid (LL), while valid in the thermodynamic limit, are significantly modified
by finite size corrections. We obtain analytical expressions for these
corrections and find that they decrease very slowly with increasing system
size. The interpretation of numerical data on finite size lattices in terms of
LL theory must therefore take these corrections into account. As an important
example, we re-examine the proposed metallic phase of the zero-temperature,
half-filled one-dimensional Holstein model without employing the LL relations.
In particular, using quantum Monte Carlo calculations, we study the competition
between the singlet pairing and charge ordering. Our results do not support the
existence of a dominant singlet pairing state.Comment: 7 page
Increased collagen synthesis rate during wound healing in muscle
Wound healing in muscle involves the deposition of collagen, but it is not known whether this is achieved by changes in the synthesis or the degradation of collagen. We have used a reliable flooding dose method to measure collagen synthesis rate in vivo in rat abdominal muscle following a surgical incision. Collagen synthesis rate was increased by 480% and 860% on days 2 and 7 respectively after surgery in the wounded muscle compared with an undamaged area of the same muscle. Collagen content was increased by approximately 100% at both day 2 and day 7. These results demonstrate that collagen deposition during wound healing in muscle is achieved entirely by an increase in the rate of collagen synthesis
Variable temperature study of the crystal and magnetic structures of the giant magnetoresistant materials LMnAsO (L=La, Nd)
Peer reviewedPublisher PD
Anomalous Proximity Effect in Underdoped YBaCuO Josephson Junctions
Josephson junctions were photogenerated in underdoped thin films of the
YBaCuO family using a near-field scanning optical microscope.
The observation of the Josephson effect for separations as large as 100 nm
between two wires indicates the existence of an anomalously large proximity
effect and show that the underdoped insulating material in the gap of the
junction is readily perturbed into the superconducting state. The critical
current of the junctions was found to be consistent with the conventional
Josephson relationship. This result constrains the applicability of SO(5)
theory to explain the phase diagram of high critical temperature
superconductors.Comment: 11 pages, 4 figure
Still There: Politics, Sectarianism and the Reverberations of War in the Presences and Absences of the Syrian State
What gets displaced in war, even when people don't move? How does conflict transform and reverberate among those still there? And, what can sectarianism tell us about state power in war and in occupation? To answer, we theorize and problematize the relationship of sectarianism to the state, and explore the effects of war and occupation in everyday practice and in socio-economic and political institutions. The cases come from two Syrian Druze regions, from the Israeli-occupied Syrian Golan Height and from Jaramana, Damascus. In the first case, the Israeli occupation shifted the national border, and, in the second case, the war in Syria created new internal borders and checkpoints. Tracing the displacement of conflict through sectarianism allows us to think through state borders, and explore everyday life in relation to economic pressures and geopolitics. It is within these absences and presences of the state that the transformations of conflict and belonging appear
Hole-pair hopping in arrangements of hole-rich/hole-poor domains in a quantum antiferromagnet
We study the motion of holes in a doped quantum antiferromagnet in the
presence of arrangements of hole-rich and hole-poor domains such as the
stripe-phase in high- cuprates. When these structures form, it becomes
energetically favorable for single holes, pairs of holes or small bound-hole
clusters to hop from one hole-rich domain to another due to quantum
fluctuations. However, we find that at temperature of approximately 100 K, the
probability for bound hole-pair exchange between neighboring hole-rich regions
in the stripe phase, is one or two orders of magnitude larger than single-hole
or multi-hole droplet exchange. As a result holes in a given hole-rich domain
penetrate further into the antiferromagnetically aligned domains when they do
it in pairs. At temperature of about 100 K and below bound pairs of holes hop
from one hole-rich domain to another with high probability. Therefore our main
finding is that the presence of the antiferromagnetic hole-poor domains act as
a filter which selects, from the hole-rich domains (where holes form a
self-bound liquid), hole pairs which can be exchanged throughout the system.
This fluid of bound hole pairs can undergo a superfluid phase ordering at the
above mentioned temperature scale.Comment: Revtex, 6 two-column pages, 4 figure
Charge ordering in extended Hubbard models: Variational cluster approach
We present a generalization of the recently proposed variational cluster
perturbation theory to extended Hubbard models at half filling with repulsive
nearest neighbor interaction. The method takes into account short-range
correlations correctly by the exact diagonalisation of clusters of finite size,
whereas long-range order beyond the size of the clusters is treated on a
mean-field level. For one dimension, we show that quantum Monte Carlo and
density-matrix renormalization-group results can be reproduced with very good
accuracy. Moreover we apply the method to the two-dimensional extended Hubbard
model on a square lattice. In contrast to the one-dimensional case, a first
order phase transition between spin density wave phase and charge density wave
phase is found as function of the nearest-neighbor interaction at onsite
interactions U>=3t. The single-particle spectral function is calculated for
both the one-dimensional and the two-dimensional system.Comment: 15 pages, 12 figure
- …