19 research outputs found

    Resilience of soil microbial communities impacted by severe drought and high temperature in the context of Mediterranean heat waves

    No full text
    International audienceIn the context of Climate Change, the increasing of frequency and intensity of droughts and heat waves constitutes a serious threat for agroecosystems in the Mediterranean region. Soils and their functions may be impacted by these extreme events through changes in the biomass, composition and activities of edaphic microbial communities. We designed an experiment to investigate changes over time in the microbial biomass, composition (EL-FAME profiles) and functions (catabolic responses) after severe drought and high temperature disturbances. Impacts were assessed using indoor soil microcosms under controlled drought and high temperatures, mimicking various stress scenarios and durations in conditions of severe drought and heat wave. Drought and heat wave restructured the soil microbial communities over the course of the experiment. This may be a consequence of inhibition and/or killing of sensitive species and selection of tolerant species by the disturbances applied, but also of the proliferation of fast-growing species after environmental soil conditions had been restored. Heating dry soil at 50 C had a stronger effect than only drying. Moreover, above a critical threshold of heat wave duration, soil microbial communities may have undergone a drastic biomass killing and restructuring associated with a shift in physiological traits. In this experimental context, resilience of microbial catabolic functions was not observed and in consequence ecosystem processes such as carbon mineralization and seques-tration in soil may be affected

    Tailor-made fructan synthesis in plants: A review

    No full text
    Fructan, a fructose polymer, is produced by many bacteria and plants. Fructan is used as carbohydrate reserve, and in bacteria also as protective outside layer. Chicory is a commercial fructan producing crop. The disadvantage of this crop is its fructan breakdown before harvest. Studies using genetically modification showed that fructan biosynthesis is difficult to steer in chicory. Alternatives for production of tailor-made fructan, fructan with a desired polymer length and linkage type, are originally non-fructan-accumulating plants expressing introduced fructosyltransferase genes. The usage of bacterial fructosyltransferases hindered plant performance, whereas plant-derived fructan genes can successfully be used for this purpose. The polymer length distribution and the yield are dependent on the origin of the fructan genes and the availability of sucrose in the host. Limitations seen in chicory for the production of tailor-made fructan are lacking in putative new platform crops like sugar beet and sugarcane and ric

    Tailor-made fructan synthesis in plants: A review

    No full text
    Fructan, a fructose polymer, is produced by many bacteria and plants. Fructan is used as carbohydrate reserve, and in bacteria also as protective outside layer. Chicory is a commercial fructan producing crop. The disadvantage of this crop is its fructan breakdown before harvest. Studies using genetically modification showed that fructan biosynthesis is difficult to steer in chicory. Alternatives for production of tailor-made fructan, fructan with a desired polymer length and linkage type, are originally non-fructan-accumulating plants expressing introduced fructosyltransferase genes. The usage of bacterial fructosyltransferases hindered plant performance, whereas plant-derived fructan genes can successfully be used for this purpose. The polymer length distribution and the yield are dependent on the origin of the fructan genes and the availability of sucrose in the host. Limitations seen in chicory for the production of tailor-made fructan are lacking in putative new platform crops like sugar beet and sugarcane and ric

    Sink filling, inulin metabolizing enzymes and carbohydrate status in field grown chicory (Cichorium intybus L.).

    No full text
    Inulin is a fructose-based polymer that is isolated from chicory (Cichorium intybus L.) taproots. The degree of polymerization (DP) determines its application and hence the value of the crop. The DP is highly dependent on the field conditions and harvest time. Therefore, the present study was carried out with the objective to understand the regulation of inulin metabolism and the process that determines the chain length and inulin yield throughout the whole growing season. Metabolic aspects of inulin production and degradation in chicory were monitored in the field and under controlled conditions. The following characteristics were determined in taproots: concentrations of glucose, fructose and sucrose, the inulin mean polymer length (mDP), yield, gene expression and activity of enzymes involved in inulin metabolism. Inulin synthesis, catalyzed by sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99) (1-SST) and fructan:fructan 1-fructosyltransferase (EC 2.4.1.100) (1-FFT), started at the onset of taproot development. Inulin yield as a function of time followed a sigmoid curve reaching a maximum in November. Inulin reached a maximum mDP of about 15 in September, than gradually decreased. Based on the changes observed In the pattern of inulin accumulation, we defined three different phases in the growing season and analyzed product formation, enzyme activity and gene expression in these defined periods. The results were validated by performing experiments under controlled conditions in climate rooms. Our results show that the decrease in 1-SST that starts in June is not regulated by day length and temperature. From mid-September onwards, the mean degree of polymerization (mDP) decreased gradually although inulin yield still increased. The decrease in mDP combined with increased yield results from fructan exohydrolase activity, induced by low temperature, and the back transfer activity of 1-FFT. Overall, this study provides background information on how to improve inulin yield and quality in chicory. (C) 2012 Elsevier GmbH. All rights reserved

    Sink filling, inulin metabolizing enzymes and carbohydrate status in field grown chicory (Cichorium intybus L.).

    No full text
    Inulin is a fructose-based polymer that is isolated from chicory (Cichorium intybus L.) taproots. The degree of polymerization (DP) determines its application and hence the value of the crop. The DP is highly dependent on the field conditions and harvest time. Therefore, the present study was carried out with the objective to understand the regulation of inulin metabolism and the process that determines the chain length and inulin yield throughout the whole growing season. Metabolic aspects of inulin production and degradation in chicory were monitored in the field and under controlled conditions. The following characteristics were determined in taproots: concentrations of glucose, fructose and sucrose, the inulin mean polymer length (mDP), yield, gene expression and activity of enzymes involved in inulin metabolism. Inulin synthesis, catalyzed by sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99) (1-SST) and fructan:fructan 1-fructosyltransferase (EC 2.4.1.100) (1-FFT), started at the onset of taproot development. Inulin yield as a function of time followed a sigmoid curve reaching a maximum in November. Inulin reached a maximum mDP of about 15 in September, than gradually decreased. Based on the changes observed In the pattern of inulin accumulation, we defined three different phases in the growing season and analyzed product formation, enzyme activity and gene expression in these defined periods. The results were validated by performing experiments under controlled conditions in climate rooms. Our results show that the decrease in 1-SST that starts in June is not regulated by day length and temperature. From mid-September onwards, the mean degree of polymerization (mDP) decreased gradually although inulin yield still increased. The decrease in mDP combined with increased yield results from fructan exohydrolase activity, induced by low temperature, and the back transfer activity of 1-FFT. Overall, this study provides background information on how to improve inulin yield and quality in chicory. (C) 2012 Elsevier GmbH. All rights reserved
    corecore