40 research outputs found

    Automated verification of shape and size properties via separation logic.

    Get PDF
    Despite their popularity and importance, pointer-based programs remain a major challenge for program verification. In this paper, we propose an automated verification system that is concise, precise and expressive for ensuring the safety of pointer-based programs. Our approach uses user-definable shape predicates to allow programmers to describe a wide range of data structures with their associated size properties. To support automatic verification, we design a new entailment checking procedure that can handle well-founded inductive predicates using unfold/fold reasoning. We have proven the soundness and termination of our verification system, and have built a prototype system

    Almost-BPS Solutions in Multi-Center Taub-NUT

    Get PDF
    Microstates of multiple collinear black holes embedded in a non-collinear two-center Taub-NUT spacetime are sought in 4 dimensions. A set of coupled partial differential equations are obtained and solved for almost-BPS states, where some supersymmetry is preserved in the context of N = 2 supergravity in 4 dimensions. The regularity of solutions is carefully considered, and we ensure that no CTC (closed time-like curves) are present. The larger framework is that of 11-dimensional N = 2 supergravity, and the current theory is obtained by compactifying it down to 4 dimensions. This work is a generalization (to three non-collinear centers) of a previous paper by Bena et al

    Dataflow Analysis for Datarace-Free Programs

    Full text link
    Memory models for shared-memory concurrent programming languages typically guarantee sequential consistency (SC) semantics for datarace-free (DRF) programs, while providing very weak or no guarantees for non-DRF programs. In effect programmers are expected to write only DRF programs, which are then executed with SC semantics. With this in mind, we propose a novel scalable solution for dataflow analysis of concurrent programs, which is proved to be sound for DRF programs with SC semantics. We use the synchronization structure of the program to propagate dataflow information among threads without requiring to consider all interleavings explicitly. Given a dataflow analysis that is sound for sequential programs and meets certain criteria, our technique automatically converts it to an analysis for concurrent programs

    Region-Based Shape Analysis with Tracked Locations

    No full text
    This paper proposes a novel approach to shape analysis: using local reasoning about individual heap locations instead of global reasoning about entire heap abstractions. We present an inter-procedural shape analysis algorithm for languages with destructive updates. The key feature is a novel memory abstraction that differs from traditional abstractions in two ways. First, we build the shape abstraction and analysis on top of a pointer analysis. Second, we decompose the shape abstraction into a set of independent configurations, each of which characterizes one single heap location. Our approach: 1) leads to simpler algorithm specifications, because of local reasoning about the single location; 2) leads to efficient algorithms, because of the smaller granularity of the abstraction; and 3) makes it easier to develop context-sensitive, demand-driven, and incremental shape analyses. We also show that the analysis can be used to enable the static detection of memory errors in programs with explicit deallocation. We have built a prototype tool that detects memory leaks and accesses through dangling pointers in C programs. The experiments indicate that the analysis is sufficiently precise to detect errors with low false positive rates; and is sufficiently lightweight to scale to larger programs. For a set of three popular C programs, the tool has analyzed about 70K lines of code in less than 2 minutes and has produced 97 warnings, 38 of which were actual errors

    Automata-based Verification of Programs with Tree Updates

    No full text
    International audienceThis paper describes an effective verification procedure for imperative programs that handle (balanced) tree-like data structures. Since the verification problem considered is undecidable, we appeal to a classical semi-algorithmic approach in which the user has to provide manually the loop invariants in order to check the validity of Hoare triples of the form {P }C{Q}, where P, Q are the sets of states corresponding to the pre-and post-conditions, and C is the program to be verified. We specify the sets of states (representing tree-like memory configurations) using a special class of tree automata named Tree Automata with Size Constraints (TASC). The main advantage of using TASC in program specifications is that they recognize non-regular sets of tree languages such as the AVL trees, the red-black trees, and in general, specifications involving arithmetic reasoning about the lengths (depths) of various (possibly all) paths in the tree. The class of TASC is closed under the operations of union, intersection and complement, and moreover, the emptiness problem is decidable, which makes it a practical verification tool. We validate our approach considering red-black trees and the insertion procedure, for which we verify that the output of the insertion algorithm is a balanced red-black tree, i.e. the longest path is at most twice as long as the shortest path

    Incrementalized pointer and escape analysis

    No full text
    corecore