19 research outputs found
Towards commercial aquaponics: a review of systems, designs, scales and nomenclature
Aquaponics is rapidly developing as the need for sustainable food production increases and freshwater and phosphorous reserves shrink. Starting from small-scale operations, aquaponics is at the brink of commercialization, attracting investment. Arising from integrated freshwater aquaculture, a variety of methods and system designs has developed that focus either on fish or plant production. Public interest in aquaponics has increased dramatically in recent years, in line with the trend towards more integrated value chains, greater productivity and less harmful environmental impact compared to other production systems. New business models are opening up, with new customers and markets, and with this expansion comes the potential for confusion, misunderstanding and deception. New stakeholders require guidelines and detail concerning the different system designs and their potentials. We provide a definitive definition of aquaponics, where the majority (> 50%) of nutrients sustaining the optimal plant growth derives from waste originating from feeding aquatic organisms, classify the available integrated aquaculture and aquaponics (open, domestic, demonstration, commercial) systems and designs, distinguish four different scales of production (≤ 50, > 50–≤ 100 m2, > 100–≤ 500 m2, > 500 m2) and present a definite nomenclature for aquaponics and aquaponic farming allowing distinctions between the technologies that are in use. This enables authorities, customers, producers and all other stakeholders to distinguish between the various systems, to better understand their potentials and constraints and to set priorities for business and regulations in order to transition RAS or already integrated aquaculture into commercial aquaponic systems
Prey mediated effects of Bt maize on fitness and digestive physiology of the red spider mite predator Stethorus punctillum Weise (Coleoptera: Coccinellidae).
The present study investigated prey-mediated effects of two maize varieties expressing a truncated Cry1Ab, Compa CB (event Bt176) and DKC7565 (event MON810), on the biology of the ladybird Stethorus punctillum. Although immuno-assays demonstrated the presence of Cry1Ab in both prey and predator collected from commercial maize-growing fields, neither transgenic variety had any negative effects on survival of the predator, nor on the developmental time through to adulthood. Furthermore, no subsequent effects on ladybird fecundity were observed. As a prerequisite to studying the interaction of ladybird proteases with Cry1Ab, proteases were characterised using a range of natural and synthetic substrates with diagnostic inhibitors. These results demonstrated that this predator utilises both serine and cysteine proteases for digestion. In vitro studies demonstrated that T. urticae were not able to process or hydrolyze Cry1Ab, suggesting that the toxin passes through the prey to the third trophic level undegraded, thus presumably retaining its insecticidal properties. In contrast, S. punctillum was able to activate the 130 kDa protoxin into the 65 kDa fragment; a fragment of similar size was also obtained with bovine trypsin, which is known to cleave the protoxin to the active form. Thus, despite a potential hazard to the ladybird of Bt-expressing maize (since the predator was both exposed to, and able to proteolytically cleave the toxin, at least in vitro), no deleterious effects were observed