243 research outputs found

    Geophysical interpretation of Venus gravity data

    Get PDF
    The investigation of the subsurface mass distribution of Venus through the analysis of the data from Pioneer Venus Orbiter (PVO) is presented. The Doppler tracking data was used to map the gravitational potential, which was compared to the topographic data from the PVO radar (ORAD). In order to obtain an unbiased comparison, the topography obtained from the PVO-ORAD was filtered to introduce distortions which are the same as those of our gravity models. The last major software package that was required in order to determine the spectral admittance Z (lambda) was used. This package solves the forward problem: given the topography and its density, and assuming no compensation, find the resulting spacecraft acceleration along a given nominal trajectory. The filtered topography is obtained by processing these accelerations in the same way (i.e., with the same geophysical inverter) as the Doppler-rate data that we use to estimate the gravity maps

    Prospects for Large Relativity Violations in Matter-Gravity Couplings

    Get PDF
    Deviations from relativity are tightly constrained by numerous experiments. A class of unmeasured and potentially large violations is presented that can be tested in the laboratory only via weak gravity couplings. Specialized highly sensitive experiments could achieve measurements of the corresponding effects. A single constraint of 1 x 10^{-11} GeV is extracted on one combination of the 12 possible effects in ordinary matter. Estimates are provided for attainable sensitivities in existing and future experiments.Comment: 10 page

    Long-Term Clustering, Scaling, and Universality in the Temporal Occurrence of Earthquakes

    Full text link
    Scaling analysis reveals striking regularities in earthquake occurrence. The time between any one earthquake and that following it is random, but it is described by the same universal-probability distribution for any spatial region and magnitude range considered. When time is expressed in rescaled units, set by the averaged seismic activity, the self-similar nature of the process becomes apparent. The form of the probability distribution reveals that earthquakes tend to cluster in time, beyond the duration of aftershock sequences. Furthermore, if aftershock sequences are analysed in an analogous way, yet taking into account the fact that seismic activity is not constant but decays in time, the same universal distribution is found for the rescaled time between events.Comment: short paper, only 2 figure

    Universality in solar flare and earthquake occurrence

    Full text link
    Earthquakes and solar flares are phenomena involving huge and rapid releases of energy characterized by complex temporal occurrence. By analysing available experimental catalogs, we show that the stochastic processes underlying these apparently different phenomena have universal properties. Namely both problems exhibit the same distributions of sizes, inter-occurrence times and the same temporal clustering: we find afterflare sequences with power law temporal correlations as the Omori law for seismic sequences. The observed universality suggests a common approach to the interpretation of both phenomena in terms of the same driving physical mechanism
    corecore