11,444 research outputs found
The Query-commit Problem
In the query-commit problem we are given a graph where edges have distinct
probabilities of existing. It is possible to query the edges of the graph, and
if the queried edge exists then its endpoints are irrevocably matched. The goal
is to find a querying strategy which maximizes the expected size of the
matching obtained. This stochastic matching setup is motivated by applications
in kidney exchanges and online dating.
In this paper we address the query-commit problem from both theoretical and
experimental perspectives. First, we show that a simple class of edges can be
queried without compromising the optimality of the strategy. This property is
then used to obtain in polynomial time an optimal querying strategy when the
input graph is sparse. Next we turn our attentions to the kidney exchange
application, focusing on instances modeled over real data from existing
exchange programs. We prove that, as the number of nodes grows, almost every
instance admits a strategy which matches almost all nodes. This result supports
the intuition that more exchanges are possible on a larger pool of
patient/donors and gives theoretical justification for unifying the existing
exchange programs. Finally, we evaluate experimentally different querying
strategies over kidney exchange instances. We show that even very simple
heuristics perform fairly well, being within 1.5% of an optimal clairvoyant
strategy, that knows in advance the edges in the graph. In such a
time-sensitive application, this result motivates the use of committing
strategies
Multicommodity Multicast, Wireless and Fast
We study rumor spreading in graphs, specifically multicommodity multicast problem under the wireless model: given source-destination pairs in the graph, one needs to find the fastest schedule to transfer information from each source to the corresponding destination. Under the wireless model, nodes can transmit to any subset of their neighbors in synchronous time steps, as long as they either transmit or receive from at most one transmitter during the same time step. We improve approximation ratio for this problem from O~(n^(2/3)) to O~(n^((1/2) + epsilon)) on n-node graphs. We also design an algorithm that satisfies p given demand pairs in O(OPT + p) steps, where OPT is the length of an optimal schedule, by reducing it to the well-studied packet routing problem. In the case where underlying graph is an n-node tree, we improve the previously best-known approximation ratio of O((log n)/(log log n)) to 3. One consequence of our proof is a simple constructive rule for optimal broadcasting in a tree under a widely studied telephone model
Spanning trees short or small
We study the problem of finding small trees. Classical network design
problems are considered with the additional constraint that only a specified
number of nodes are required to be connected in the solution. A
prototypical example is the MST problem in which we require a tree of
minimum weight spanning at least nodes in an edge-weighted graph. We show
that the MST problem is NP-hard even for points in the Euclidean plane. We
provide approximation algorithms with performance ratio for the
general edge-weighted case and for the case of points in the
plane. Polynomial-time exact solutions are also presented for the class of
decomposable graphs which includes trees, series-parallel graphs, and bounded
bandwidth graphs, and for points on the boundary of a convex region in the
Euclidean plane. We also investigate the problem of finding short trees, and
more generally, that of finding networks with minimum diameter. A simple
technique is used to provide a polynomial-time solution for finding -trees
of minimum diameter. We identify easy and hard problems arising in finding
short networks using a framework due to T. C. Hu.Comment: 27 page
Weakening and Shifting of the Saharan Shallow Meridional Circulation During Wet Years of the West African Monsoon
The correlation between increased Sahel rainfall and reduced Saharan surface
pressure is well established in observations and global climate models, and has
been used to imply that increased Sahel rainfall is caused by a stronger
shallow meridional circulation (SMC) over the Sahara. This study uses two
atmospheric reanalyses to examine interannual variability of Sahel rainfall and
the Saharan SMC, which consists of northward near-surface flow across the Sahel
into the Sahara and southward flow near 700 hPa out of the Sahara. During wet
Sahel years, the Saharan SMC shifts poleward, producing a drop in low-level
geopotential and surface pressure over the Sahara. Statistically removing the
effect of the poleward shift from the low-level geopotential eliminates
significant correlations between this geopotential and Sahel precipitation. As
the Saharan SMC shifts poleward, its mid-tropospheric divergent outflow
decreases, indicating a weakening of its overturning mass flux. The poleward
shift and weakening of the Saharan SMC during wet Sahel years is reproduced in
an idealized model of West Africa; a wide range of imposed sea surface
temperature and land surface albedo perturbations in this model produce a much
larger range of SMC variations that nevertheless have similar quantitative
associations with Sahel rainfall as in the reanalyses. These results disprove
the idea that enhanced Sahel rainfall is caused by strengthening of the Saharan
SMC. Instead, these results are consistent with the hypothesis that the a
stronger SMC inhibits Sahel rainfall, perhaps by advecting mid-tropospheric
warm and dry air into the precipitation maximum.Comment: Submitted to Journal of Climat
Bicriteria Network Design Problems
We study a general class of bicriteria network design problems. A generic
problem in this class is as follows: Given an undirected graph and two
minimization objectives (under different cost functions), with a budget
specified on the first, find a <subgraph \from a given subgraph-class that
minimizes the second objective subject to the budget on the first. We consider
three different criteria - the total edge cost, the diameter and the maximum
degree of the network. Here, we present the first polynomial-time approximation
algorithms for a large class of bicriteria network design problems for the
above mentioned criteria. The following general types of results are presented.
First, we develop a framework for bicriteria problems and their
approximations. Second, when the two criteria are the same %(note that the cost
functions continue to be different) we present a ``black box'' parametric
search technique. This black box takes in as input an (approximation) algorithm
for the unicriterion situation and generates an approximation algorithm for the
bicriteria case with only a constant factor loss in the performance guarantee.
Third, when the two criteria are the diameter and the total edge costs we use a
cluster-based approach to devise a approximation algorithms --- the solutions
output violate both the criteria by a logarithmic factor. Finally, for the
class of treewidth-bounded graphs, we provide pseudopolynomial-time algorithms
for a number of bicriteria problems using dynamic programming. We show how
these pseudopolynomial-time algorithms can be converted to fully
polynomial-time approximation schemes using a scaling technique.Comment: 24 pages 1 figur
- …