2,747 research outputs found

    Coherent transport in disordered metals out of equilibrium

    Full text link
    We derive a formula for the quantum corrections to the electrical current for a metal out of equilibrium. In the limit of linear current-voltage characteristics our formula reproduces the well known Altshuler-Aronov correction to the conductivity of a disordered metal. The current formula is obtained by a direct diagrammatic approach, and is shown to agree with what is obtained within the Keldysh formulation of the non-linear sigma model. As an application we calculate the current of a mesoscopic wire. We find a current-voltage characteristics that scales with eV/kTeV/kT, and calculate the different scaling curves for a wire in the hot-electron regime and in the regime of full non-equilibrium.Comment: 16 pages, 13 figure

    Coherent transport in disordered metals: zero dimensional limit

    Full text link
    We consider non-equilibrium transport in disordered conductors. We calculate the interaction correction to the current for a short wire connected to electron reservoirs by resistive interfaces. In the absence of charging effects we find a universal current-voltage-characteristics. The relevance of our calculation for existing experiments is discussed as well as the connection with alternative theoretical approaches

    Quasiclassical theory of charge transport in disordered interacting electron systems

    Full text link
    We consider the corrections to the Boltzmann theory of electrical transport arising from the Coulomb interaction in disordered conductors. In this article the theory is formulated in terms of quasiclassical Green's functions. We demonstrate that the formalism is equivalent to the conventional diagrammatic technique by deriving the well-known Altshuler-Aronov corrections to the conductivity. Compared to the conventional approach, the quasiclassical theory has the advantage of being closer to the Boltzmann theory, and also allows description of interaction effects in the transport across interfaces, as well as non-equilibrium phenomena in the same theoretical framework. As an example, by applying the Zaitsev boundary conditions which were originally developed for superconductors, we obtain the P(E)P(E)-theory of the Coulomb blockade in tunnel junctions. Furthermore we summarize recent results obtained for the non-equilibrium transport in thin films, wires and fully coherent conductors.Comment: 46 pages; review articl

    Spin current swapping and Hanle spin Hall effect in the two dimensional electron gas

    Full text link
    We analyze the effect known as "spin current swapping" (SCS) due to electron-impurity scattering in a uniform spin-polarized two-dimensional electron gas. In this effect a primary spin current JiaJ_i^a (lower index for spatial direction, upper index for spin direction) generates a secondary spin current JaiJ_a^i if iai \neq a, or JjjJ_j^j, with jij\ne i, if i=ai= a. Contrary to naive expectation, the homogeneous spin current associated with the uniform drift of the spin polarization in the electron gas does not generate a swapped spin current by the SCS mechanism. Nevertheless, a swapped spin current will be generated, if a magnetic field is present, by a completely different mechanism, namely, the precession of the spin Hall spin current in the magnetic field. We refer to this second mechanism as Hanle spin Hall effect, and we notice that it can be observed in an experiment in which a homogeneous drift current is passed through a uniformly magnetized electron gas. In contrast to this, we show that an unambiguous observation of SCS requires inhomogeneous spin currents, such as those that are associated with spin diffusion in a metal, and no magnetic field. An experimental setup for the observation of the SCS is therefore proposed.Comment: 8 pages, 5 figure

    Spin thermoelectrics in a disordered Fermi gas

    Get PDF
    We study the connection between the spin-heat and spin-charge response in a disordered Fermi gas with spin-orbit coupling. It is shown that the ratio between the above responses can be expressed as the thermopower S=(πkB)2Tσ/3eσS=-(\pi k_B)^2T\sigma'/3e\sigma times a number RsR_s which depends on the strength and type of the spin-orbit couplings considered. The general results are illustrated by examining different two-dimensional electron or hole systems with different and competing spin-orbit mechanisms, and we conclude that a metallic system could prove much more efficient as a heat-to-spin than as a heat-to-charge converter.Comment: 6 pages, 1 figur

    Onsager relations in a two-dimensional electron gas with spin-orbit coupling

    Get PDF
    Theory predicts for the two-dimensional electrons gas with only Rashba spin-orbit interaction a vanishing spin Hall conductivity and at the same time a finite inverse spin Hall effect. We show how these seemingly contradictory results are compatible with the Onsager relations: the latter do hold for spin and particle (charge) currents in the two-dimensional electron gas, although (i) their form depends on the experimental setup and (ii) a vanishing bulk spin Hall conductivity does not necessarily imply a vanishing spin Hall effect. We also discuss the situation in which extrinsic spin orbit from impurities is present and the bulk spin Hall conductivity can be different from zero.Comment: Accepted versio

    Renormalization group and Ward identities in quantum liquid phases and in unconventional critical phenomena

    Full text link
    By reviewing the application of the renormalization group to different theoretical problems, we emphasize the role played by the general symmetry properties in identifying the relevant running variables describing the behavior of a given physical system. In particular, we show how the constraints due to the Ward identities, which implement the conservation laws associated with the various symmetries, help to minimize the number of independent running variables. This use of the Ward identities is examined both in the case of a stable phase and of a critical phenomenon. In the first case we consider the problems of interacting fermions and bosons. In one dimension general and specific Ward identities are sufficient to show the non-Fermi-liquid character of the interacting fermion system, and also allow to describe the crossover to a Fermi liquid above one dimension. This crossover is examined both in the absence and presence of singular interaction. On the other hand, in the case of interacting bosons in the superfluid phase, the implementation of the Ward identities provides the asymptotically exact description of the acoustic low-energy excitation spectrum, and clarifies the subtle mechanism of how this is realized below and above three dimensions. As a critical phenomenon, we discuss the disorder-driven metal-insulator transition in a disordered interacting Fermi system. In this case, through the use of Ward identities, one is able to associate all the disorder effects to renormalizations of the Landau parameters. As a consequence, the occurrence of a metal-insulator transition is described as a critical breakdown of a Fermi liquid.Comment: 47 pages, 11 figure

    Spin Hall and Edelstein effects in metallic films: from 2D to 3D

    Get PDF
    A normal metallic film sandwiched between two insulators may have strong spin-orbit coupling near the metal-insulator interfaces, even if spin-orbit coupling is negligible in the bulk of the film. In this paper we study two technologically important and deeply interconnected effects that arise from interfacial spin-orbit coupling in metallic films. The first is the spin Hall effect, whereby a charge current in the plane of the film is partially converted into an orthogonal spin current in the same plane. The second is the Edelstein effect, in which a charge current produces an in-plane, transverse spin polarization. At variance with strictly two-dimensional Rashba systems, we find that the spin Hall conductivity has a finite value even if spin-orbit interaction with impurities is neglected and "vertex corrections" are properly taken into account. Even more remarkably, such finite value becomes "universal" in a certain configuration. This is a direct consequence of the spatial dependence of spin-orbit coupling on the third dimension, perpendicular to the film plane. The non-vanishing spin Hall conductivity has a profound influence on the Edelstein effect, which we show to consist of two terms, the first with the standard form valid in a strictly two-dimensional Rashba system, and a second arising from the presence of the third dimension. Whereas the standard term is proportional to the momentum relaxation time, the new one scales with the spin relaxation time. Our results, although derived in a specific model, should be valid rather generally, whenever a spatially dependent Rashba spin-orbit coupling is present and the electron motion is not strictly two-dimensional.Comment: 23 pages, 3 figure

    Non-linear conductivity and quantum interference in disordered metals

    Full text link
    We report on a novel non-linear electric field effect in the conductivity of disordered conductors. We find that an electric field gives rise to dephasing in the particle-hole channel, which depresses the interference effects due to disorder and interaction and leads to a non-linear conductivity. This non-linear effect introduces a field dependent temperature scale TET_E and provides a microscopic mechanism for electric field scaling at the metal-insulator transition. We also study the magnetic field dependence of the non-linear conductivity and suggest possible ways to experimentally verify our predictions. These effects offer a new probe to test the role of quantum interference at the metal-insulator transition in disordered conductors.Comment: 5 pages, 3 figure
    corecore