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Spin Hall and Edelstein effects in metallic films: From two to three dimensions
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A normal metallic film sandwiched between two insulators may have strong spin-orbit coupling near the
metal-insulator interfaces, even if spin-orbit coupling is negligible in the bulk of the film. In this paper, we study
two technologically important and deeply interconnected effects that arise from interfacial spin-orbit coupling
in metallic films. The first is the spin Hall effect, whereby a charge current in the plane of the film is partially
converted into an orthogonal spin current in the same plane. The second is the Edelstein effect, in which a charge
current produces an in-plane, transverse spin polarization. At variance with strictly two-dimensional Rashba
systems, we find that the spin Hall conductivity has a finite value even if spin-orbit interaction with impurities
is neglected and “vertex corrections” are properly taken into account. Even more remarkably, such a finite
value becomes “universal” in a certain configuration. This is a direct consequence of the spatial dependence of
spin-orbit coupling on the third dimension, perpendicular to the plane of the film. The nonvanishing spin Hall
conductivity has a profound influence on the Edelstein effect, which we show to consist of two terms, the first
with the standard form valid in a strictly two-dimensional Rashba system, and a second arising from the presence
of the third dimension. Whereas the standard term is proportional to the momentum relaxation time, the new
one scales with the spin relaxation time. Our results, although derived in a specific model, should be valid rather
generally, whenever a spatially dependent Rashba spin-orbit coupling is present and the electron motion is not
strictly two dimensional.
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I. INTRODUCTION

Spin-orbit coupling gives rise to several interesting trans-
port phenomena arising from the induced correlation between
charge and spin degrees of freedom. In particular, it allows
one to manipulate spins without using magnetic electrodes,
having as such become one of the most studied topics within
the field of spintronics [1–14]. Among the many interesting
effects that arise from spin-orbit coupling, two stand out for
their potential technological importance: the spin Hall effect
[15] and the Edelstein effect [16,17]. The spin Hall effect
consists in the appearance of a z-polarized spin current flowing
in the y direction produced by an electric field in the x direction
[18–22]. The generation of a perpendicular electric field by an
injected spin current, i.e., the inverse spin Hall effect, has been
observed in numerous settings and presently provides the basis
for one of the most effective methods to detect spin currents
[23–25]. The Edelstein effect [16,17] consists instead in the
appearance of a y-spin polarization in response to an applied
electric field in the x direction. It has been proposed as a
promising way of achieving all-electrical control of magnetic
properties in electronic circuits [18,19,26–31]. The two effects
are deeply connected [32–34], as we will see momentarily.

There are, in principle, several possible mechanisms for
the spin Hall effect, and it is useful to divide them in two
classes. We call them either extrinsic or intrinsic, depending on
whether their origin is the spin-orbit interaction with impurities
or with the regular lattice structure. In this work, we will focus
exclusively on intrinsic effects. This means that the impurities
(while, of course, needed to give the system a finite electrical
conductivity) do not couple to the electron spin.

Bychkov and Rashba devised an extremely simple and
yet powerful model [35] describing the intrinsic spin-orbit

coupling of the electrons in a two-dimensional electron gas
(2DEG) in a quantum well in the presence of an electric field
perpendicular to the plane in which the electrons move. In
spite of its apparent simplicity, this analytically solvable model
has several subtle features, which arise from the interplay of
spin-orbit coupling and impurity scattering. The best-known
feature is the vanishing of the spin Hall conductivity (SHC)
for a uniform and constant in-plane electric field [36–38]. This
would leave spin-orbit coupling with impurities (not included
in the original Bychkov-Rashba model) as the only plausible
mechanism for the experimentally observed spin Hall effect in
semiconductor-based 2DEGs [18,19].1

However it has been recently pointed out that the vanishing
of the SHC need not occur in systems which are not
strictly two dimensional, as explicitly shown in a model
schematically describing the interface of the two insulating
oxides LaAlO3 and SrTiO3 (LAO/STO) [40]. Even more
recently [41], it has been suggested that a large SHC could
be realized in a thin metal (Cu) film that is sandwiched
between two different insulators, such as oxides or even the
vacuum.2 Such a system is shown schematically in Fig. 1. The
inversion symmetry breaking across the interfaces produces
interfacial Rashba-type spin-orbit couplings, thus allowing
metals without substantial intrinsic bulk spin-orbit to host a
nonvanishing SHC. The spin-orbit coupling asymmetry or,

1An alternative source of intrinsic spin Hall effect is random
fluctuations of the electric field perpendicular to the 2DEG (see
Dugaev et al. [39]).

2A very large spin Hall angle of extrinsic origin has been observed
[51] in thin films of Cu doped with bismuth impurities. In Ref. [41],
however, the Bi impurities are absent.
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FIG. 1. (Color online) Schematic representation of a thin metal
film sandwiched between insulators with asymmetric interfacial
spin-orbit couplings. V+ and V− are the heights of the two interfacial
potential barriers. These potentials generate interfacial spin-orbit
interactions of the Rashba type, whose strength is controlled by the
effective Compton wavelengths λ+ and λ− respectively.

more generally, the fact that the spin-orbit interaction is not
homogeneous across the thickness of the film, is the core issue
in this approach. In this paper, we will study the influence of
the interfacial spin-orbit couplings on the Edelstein and spin
Hall effects in this class of heterostructures.

Before proceeding to a detailed study of the model depicted
in Fig. 1, it is useful to recall the connection [32–34] that exists
between the spin Hall and Edelstein effects in the Bychkov-
Rashba model, described by the Hamiltonian

H = p2

2m
+ α(σxpy − σypx), (1)

where m is the effective electron mass and α is the Bychkov-
Rashba spin-orbit coupling constant given by α = λ2eEz/�,
with λ the materials’ effective Compton wavelength, Ez

the electric field perpendicular to the electron layer, and e

the absolute value of the electron charge. It is convenient
to describe spin-orbit coupling in terms of a non-Abelian
gauge field A = Aaσ a/2, with Ax

y = 2mα and Ay
x = −2mα

[43–45]. If not otherwise specified, superscripts indicate spin
components, while subscripts stand for spatial components.
The first consequence of resorting to this language is the
appearance of an SU(2) magnetic field Bz

z = −(2mα)2, which
arises from the noncommuting components of the Bychkov-
Rashba vector potential. Such a spin-magnetic field couples
the charge current driven by an electric field, say along x,
to the z-polarized spin current flowing along y. This is very
much similar to the standard Hall effect, where two charge
currents flowing perpendicular to each other are coupled by
a magnetic field. The drift component of the spin current can
thus be described by a Hall-type term[

J z
y

]
drift = σ SHE

drift Ex. (2)

It is, however, important to appreciate that this is not yet the
full spin Hall current, i.e., σ SHE

drift is not the full SHC. In the
diffusive regime, σ SHE

drift is given by the classic formula σ SHE
drift =

(ωcτ )σD/e, where ωc = B/m� is the “cyclotron frequency”

associated with the SU(2) magnetic field, τ is the elastic
momentum scattering time, and σD is the Drude conductivity.
For a more general formula, see Eq. (6).

In addition to the drift current, there is also a “diffusion
current” due to spin precession around the Bychkov-Rashba
effective spin-orbit field. Within the SU(2) formalism, this
current arises from the replacement of the ordinary derivative
with the SU(2) covariant derivative in the expression for the
diffusion current. The SU(2) covariant derivative, due to the
gauge field, is

∇jO = ∂jO + i[Aj ,O], (3)

with O a given quantity being acted upon. The normal
derivative ∂j along a given axis j is shifted by the commutator
with the gauge field component along that same axis. As a
result of the replacement ∂ → ∇ diffusionlike terms, normally
proportional to spin density gradients, arise even in uniform
conditions and the diffusion contribution to the spin current
turns out to be [

J z
y

]
diff = 2mα

�
Dsy, (4)

where D = v2
F τ/2 is the diffusion coefficient, vF being the

Fermi velocity. In the diffusive regime, the full spin current J z
y

can thus be expressed in the suggestive form

J z
y = D

Lso
sy + σ SHE

drift Ex, (5)

where Lso = �(2mα)−1 plays the role of an “orientational spin
diffusion length” related to the different Fermi momenta in the
two spin-orbit split bands. For a detailed justification of Eq. (5),
we refer the reader to Refs. [44,46]. The factor in front of the
spin density in the first term of Eq. (5) can also be written
in terms of the Dyakonov-Perel spin relaxation time, i.e., the
“orientational spin diffusion time” given by τs = L2

so/D. In
terms of τ and τs one has

σ SHE
drift = e

8π�

2τ

τs

, (6)

which is indeed equivalent to the classical surmise given after
Eq. (2). If we introduce the total SHC and the Edelstein
conductivity (EC) defined by

J z
y = σ SHEEx, sy = σ EEEx (7)

we may rewrite Eq. (5) as

σ EE = τs

Lso

(
σ SHE − σ SHE

drift

)
. (8)

In the standard Bychkov-Rashba model, a general constraint
from the equation of motion dictates that under steady
and uniform conditions J z

y = 0. Therefore, the EC reads
as

σ EE = − τs

Lso

σ SHE
drift = −e

m

2π�2
ατ = −eN0ατ, (9)

which is easily obtained by using the expressions given above
and the single-particle density of states in two dimensions
N0 = m/2π�

2. The remarkable thing is that this expression
remains unchanged for arbitrary ratios between the spin
splitting energy and the disorder broadening of the levels.
However, in a more general situation with a nonzero SHC,
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the EC would consist of the two terms appearing in Eq. (8).
The latter equation is the “deep connection” mentioned earlier
between the Edelstein and the spin Hall effect. The second term
on the right-hand side is the “regular” contribution to the EC,
the only surviving one in the Bychkov-Rashba model where
the full SHC vanishes. The first term is “anomalous” in the
sense that it does not appear in the standard Bychkov-Rashba
model, but it does appear in more general models such as
the one we discuss in this paper. Notice that the “regular”
term is proportional to τ [see Eq. (6)], while the “anomalous”
term is proportional to the Dyakonov-Perel relaxation time τs ,
which, in the diffusive regime, is inversely proportional to the
momentum relaxation time.

At variance with the Bychkov-Rashba model, the model
we choose for our system is not strictly two dimensional,
and we take into account several states of quantized motion
(subbands) in the direction perpendicular to the interface (z). A
crucial feature of this model is the occurrence of two different
spin-orbit couplings at the two interfaces. The difference arises
because (i) the interfacial potential barriers V+ and V− are
generally different, and (ii) the effective Compton wavelengths
λ+ and λ−, characterizing the spin-orbit coupling strength at
the two interfaces, are different.

Our central results for the generic asymmetric model are

σ SHE = −
nc∑

n=1

e

4π�

	E
(3)
nkFn

	EnkFn

(10)

and

σ EE =
nc∑

n=1

eN0

kFn�

[
	EnkFn

τ + 	E
(3)
nkFn

τ
(n)
DP

]
, (11)

the sums running over the nc filled z subbands of the thin
film. To each subband there corresponds a Fermi wave
vector (without spin orbit) kFn, an intraband spin-orbit energy
splitting with a linear- and a cubic-in-k part

	EnkFn
= (2E0n

2/d)

[
kFn(λ2

+ − λ2
−)

+ 2mk3
Fn

�2
(λ6

+V+ − λ6
−V−)

]
(12)

≡ 	E
(1)
nkFn

+ 	E
(3)
nkFn

(13)

and a Dyakonov-Perel spin relaxation time

τ
(n)
DP

τ
= 2

[
1 + (

2τ	EnkFn
/�

)2(
2τ	EnkFn

/�
)2

]
. (14)

In the above formulas, d is the film thickness and E0 =
�

2π2/2md2. It is important to keep in mind that these formulas
have been derived under the following assumptions:

(1) The spin-orbit interaction produces only a small cor-
rection to the energy levels: in particular, the spin splittings
	Enk in the various subbands are small in comparison with the
energy separation between the subbands, which we denote by
	EIB. By considering the first term in Eq. (12) and assuming
the interband spacing scaling as E0, this assumption requires
the effective Compton wavelength to be smaller than the
geometrical average between the film thickness and the Fermi

wavelength λ± <
√

dλFn
with λFn

= 2π/kFn
. The second

term in Eq. (12) is also assumed small with respect to the
first as required for the validity of the expansion, implying
the condition 2mk2

FnV±λ4
±/�

2 < 1. Hence, in summary, one
requires the conditions

λ2
±

dλFn

< 1,
V

E0
<

d2λ2
Fn

λ4±
. (15)

As a rough estimate with d ∼ 10−9 m, λ± ∼ 10−10 m,
λFn

∼ 10−9 m, we have λ2
±/(dλFn

) ∼ 10−2, which makes the
assumption (15) reasonable.

(2) In addition, the spacing between subbands must be
large compared to the broadening caused by disorder, meaning
that interband transitions caused by impurity scattering are
rare. Mathematically, this condition is expressed by the
inequality

�

τ
< 	EIB, (16)

where τ is the typical electron-impurity scattering time. This
condition implies, in particular, that the metallic film can not
be too large, otherwise the intersubband spacing, scaling as
E0 ∼ 1/d2, would become smaller than �/τ . A corollary to
this is that the number of occupied subbands must remain
small, for example, one has nc = 4 in a typical 1-nm-wide Al
film [47]. Roughly, one expects 	EIBτ/� ∼ 10.

Two particularly interesting regimes are apparent. First, a
“quasisymmetric” configuration, defined by equal spin-orbit
strengths λ+ = λ− ≡ λ, but different barrier heights V+ �= V−.
In this case, 	E

(1)
nk = 0 (due to Ehrenfest’s theorem3) and a

most striking result is obtained: the SHC has a maximal value
of − e

4π�
(independent of λ!) times the number of occupied

bands

σ SHE = −
nc∑

n=1

e

4π�
. (17)

At the same time, the “anomalous” EC is at its largest. A
second very interesting configuration is a strongly asymmetric
insulator-metal-vacuum junction λ− � λ+ ≡ λ, V− � V+ ≡
V . In this case, the SHC becomes directly proportional to the
barrier height V on the side on which the spin-orbit interaction
is stronger:

σ SHE = −
nc∑

n=1

e

4π�3
2mk2

FnV λ4. (18)

Notice that, in view of condition (15), the SHC can not be
made arbitrarily large simply by engineering a large V .

The paper is organized as follows. In Sec. II, we introduce
and discuss the model. In Secs. III and IV, we calculate the
SHC and the EC, respectively. Both sections are technically

3This is because the splitting of the energy levels to first order in k

is shown by perturbation theory to be proportional to the expectation
value of V ′(z), i.e., the force, in the ground state in the absence of
spin-orbit coupling. By Ehrenfest’s theorem this is the expectation
value of the time derivative of the z component of the momentum,
and therefore must vanish [52].
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heavy and can be skipped at a first reading, leading straight
to Sec. V where the physical consequences of our results
are discussed and special regimes are analyzed. Section VI
presents our summary and conclusions.

II. THE MODEL AND ITS SOLUTION

Following Ref. [41], we model the normal metallic thin film
via the following Hamiltonian:

H = p2

2m
+ p2

z

2m
+ VC(z) + HR + U (r), (19)

where the first term represents the kinetic energy associated
to the unconstrained motion in the xy plane and p = (px,py)
is the two-dimensional momentum operator. The second term
is the kinetic energy of the motion in the perpendicular
direction, with pz the momentum operator in the z direction
(we ignore the possibility of different effective masses in plane
and out of plane). The finite thickness d of the metallic film is
taken into account by a confining potential

VC = V+θ (z − z+) + V−θ (z− − z), (20)

where V± is the height of the potential barrier at z± = ±d/2
and θ (z) is the Heaviside function. The third term in Eq. (19)
describes the Rashba interfacial spin-orbit interaction in the
xy plane located at z± = ±d/2:

HR = λ2
−V−δ(z − z−) − λ2

+V+δ(z − z+)

�
(pyσx − pxσy),

(21)

where λ± are the effective Compton wavelengths for the two
interfaces, σx,σy,σz are the Pauli matrices. The last term in
Eq. (19) represents the scattering from impurities affecting
the motion in the x-y plane and r = (x,y) is the coordinate
operator. The impurity potential is taken in a standard
way as a white-noise disorder with variance 〈U (r)U (r′)〉 =
(2πN0τ )−1δ(r − r′), where N0 is the two-dimensional density
of states previously introduced. We will assume throughout
that the Fermi energy EFn in each subband is much larger
than the level broadening �/τ and use the self-consistent Born
approximation.

The eigenfunctions of the Hamiltonian (19) have the form

ψnks(r,z) = eik·r
√
A

1√
2

(
1

iseiθk

)
fnks(z), (22)

where A is the area of the interface, k = (kx,ky) is the in-plane
wave vector, r is the position in the interfacial plane, and z is the
coordinate perpendicular to the plane. θk is the angle between
k and the x axis. These states are classified by a subband
index n = 1,2, . . ., which plays the role of a principal quantum
number, an in-plane wave vector k, and a helicity index s = +1
or −1 which determines the form of the spin-dependent part
of the wave function.

By inserting the wave function (22) into the Schrödinger
equation for the Hamiltonian (19), we find the following
equation for the functions fnks(z) describing the motion along

the z axis:

− �
2

2m
f ′′

nks(z) + {VC(z) − ks[λ2
−V−δ(z + d/2)

− λ2
+V+δ(z − d/2)]}fnks(z) = εnksfnks(z), (23)

where the full energy eigenvalues are

Enks = �
2k2

2m
+ εnks . (24)

By taking into account the continuity of the wave function
fnks(z) at z = ±d/2 and the discontinuities of its derivatives
we obtain for the eigenvalue εnks the following transcendental
equation:

arctan

⎛
⎝ √

ε√(
d2

d2−
− ε

) − d
d−

α−sk

⎞
⎠

+ arctan

⎛
⎝ √

ε√(
d2

d2+
− ε

) + d
d+

α+sk

⎞
⎠ + √

ε = nπ, (25)

where the energy ε is measured in units of E0/(π2) =
�

2/(2md2) set by the thickness of the film. In the absence
of spin-orbit coupling (λ± = 0) and for infinite heights of the
potential (V± → ∞), the solution reduces to the well-known
energy levels εnks = E0n

2.
In the general case with both λ± and V± finite, we use pertur-

bation theory by assuming d large. There are two natural length
scales associated with the confining potential d± = �/

√
2mV±

so that we expand in the small parameters d±/d. Since all the
energy scales are set by E0, we find it useful to describe the
spin-orbit coupling in terms of the parameters α± = λ2

±/d±,
which have the dimensions of a length. The product E0α±/�

has the dimensions of a velocity and plays the role of the
Rashba coupling parameter. In the following, we make an
expansion to first order in d±/d and up to third order in α±k =
�

2λ2
±k/(2mV±). Requiring that the second expansion param-

eter be smaller than 1 yields the condition (15) for the validity
of our calculation. For the eigenvalues of Eq. (23), we find

εnks = E0n
2

[
1 − 2

d− + d+
d

+ se1k + e2k
2 + se3k

3

]
(26)

and the eigenfunctions

fnks(z) = cnks sin

[
nπ

d + d−
1−α−ks

+ d+
1+α+ks

×
(

d

2
+ z + d−

1 − α−ks

)]
, (27)

with n = 1,2, . . ., where

cnks =
√

4

de[2 − (se1k + e2k2 + se3k3)]
,

de = d + d+ + d−;

e1 = 2

(
d+
d

α+ − d−
d

α−

)
, e2 = −2

(
d+
d

α2
+ + d−

d
α2

−

)
,

e3 = 2

(
d+
d

α3
+ − d−

d
α3

−

)
. (28)
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FIG. 2. Feynman bubble diagram for the EC [(a) and (b)] and SHC (c). The empty right dot indicates the spin density (EC) or the spin
current density (SHC) bare vertex, the left empty one indicates the normal velocity operator, and the full dot is the dressed charge current
density vertex.

Notice that the sign of the coefficients e1 and e3 depends on
the relative strength of the spin-orbit coupling λ± and barrier
heights V±. To avoid trouble with negative signs in the follow-
ing calculations, we assume that the couplings are labeled in
such a way that λ+ > λ−, and V+ > V− so that e1,e3 > 0.

In the next section, we evaluate the SHC assuming that
n = nc is the topmost occupied subband. We use units such
that � = c = 1.

III. SPIN HALL CONDUCTIVITY

The SHC is defined as the nonequilibrium spin current
density response to an applied electric field. By using a
vector gauge with the electric field given by E = −∂tA, the
Kubo formula, corresponding to the bubble diagram of Fig. 2,
reads as

σ SHE = lim
ω→0

Im
〈〈
jz
y ; jx

〉〉
ω

, (29)

where we have introduced the spin current operator jz
y =

σzky/2m and the charge current operator jx = −ev̂x . The
number current operator, besides the standard velocity com-
ponent, includes a spin-orbit-induced anomalous contribution
v̂x = kx/m + �̂x . Without vertex corrections, the anomalous
contribution reads as

�̂x = δv̂x = [λ2
+V+δ(z − z+) − λ2

−V−δ(z − z−)]σy. (30)

This expression can be written in terms of the exact Green’s
functions and vertices as

σ SHE = − lim
ω→0

Im
e

ω

∑
nn′kk′ss ′

〈n′k′s ′|v̂x |nks〉〈nks|jz
y |n′k′s ′〉

×
∫ ∞

−∞

dε

2π
Gns(ε+,k)Gn′s ′ (ε−,k′), (31)

where e > 0 is the unit charge, ε± = ε ± ω/2, and Gns(ε,k) =
(ε − Enks + isgnε/2τ )−1 is the Green’s function averaged
over disorder in the self-consistent Born approximation with

self-energy

�ns(r,r′; ε) = δ(r − r′)
2πN0τ

Gns(r,r; ε). (32)

After performing the integral over the frequency, we obtain

σ SHE = − e

2π

∑
nn′kss ′

〈n′ks ′|v̂x |nks〉〈nks|jz
y |n′ks ′〉GR

nksG
A
n′ks ′ ,

(33)
where we have introduced the retarded and advanced zero-
energy Green’s functions at the Fermi level

G
R,A
nks = 1

−Enks + μ ± i/2τ
(34)

and exploited the fact that plane waves at different momentum
k are orthogonal.

To proceed further, we need the expression for the vertices.
It is easy to recognize that the standard part of the velocity
operator kx/m does not contribute since it requires s = s ′,
whereas the matrix elements of jz

y differ from zero only for
s �= s ′. Explicitly, we have

〈n′ks ′|kx |nks〉 = kx〈fn′ks ′ |fnks〉δs ′s

= 〈fn′ks ′ |fnks〉k cos θk δs ′s , (35)

〈nks ′|δv̂x |nks〉 = (cos θk σz,s ′s + sin θk σy,s ′s)

× 	Enk

k
〈fnks ′ |fnks〉, (36)

〈nks|jz
y |n′ks ′〉 = 〈fnks |fn′ks ′ 〉 k

2m
sin θk σx,ss ′ , (37)

where 	Enk = (Enk+ − Enk−)/2 = E0n
2(e1k + e3k

3) is half
the spin-splitting energy in the nth band. Equation (36) is
straightforwardly obtained from the eigenvalue equation (23)
for the functions fnks(z).

Let us now discuss the overlaps between the wave functions
〈fnks |fn′k′s ′ 〉. If n = n′ we have

〈fnks |fnk′s ′ 〉 = de

2
cnkscnk′s ′

[
1 − e1(ks + k′s ′) + e2(k2 + k′2) + e3(k3s + k′3s ′)

4

]
, (38)

which is unity plus corrections of order (d±/d) when s,k �=
s ′,k′. If n �= n′, 〈fnks |fn′k′s ′ 〉 is at least of order (d±/d).
Before continuing our calculation we observe that it is
important to distinguish between the intraband (n = n′) and the

interband (n �= n′) contributions. The interband contributions
are of second order in d±/d because they are proportional to
〈fnks |fn′ks ′ 〉2. Since we limit our expansion to the first order
in d±/d, we will from now on neglect these contributions.
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Notice, however, that this approximation is no longer valid
when the intraband splitting controlled by e1 and e3 vanishes.
In this case, one can not avoid taking into account the interband
contributions. In the same spirit, we also approximate the
intraband overlap 〈fnks |fnk′s ′ 〉 � 1 because all of our results
are at least linear in (d±/d) and we neglect higher-order terms.

The anomalous contribution to the velocity vertex �̂x can
be computed following the procedure described in Ref. [37]
according to the equations (see Fig. 3)

�̂x = γ̃x + 1

2πN0τ

∑
k′

GR
k′ �̂xG

A
k′ ,

(39)

γ̃x = δ̂vx + 1

2πN0τ

∑
k′

GR
k′

k′
x

m
GA

k′ ≡ γ̃ (1) + γ̃ (2).

To extend the treatment to the present case, the projection
must be made over the states |nks〉. Assuming that the impurity
potential does not depend on z, the matrix elements of the
effective vertex γ̃ (2) are

γ
(2)nn
ss ′ (k) ≡ 〈nks|γ̃ (2)|nks ′〉

= 1

2πN0τ

∑
n1k′s1

〈nks|n1k′s1〉GR
n1k′s1

× k′
x

m
GA

n1k′s1
〈n1k′s1|nks ′〉, (40)

and γ
(1)nn
ss ′ (k) ≡ 〈nks|γ̃ (1)|nks ′〉 is given by Eq. (36). The

matrix elements 〈nks|n1k′s1〉 and 〈n1k′s1|nks ′〉 are those of
the impurity potential:

〈nks|n1k′s1〉 = 1
2 〈fnks |fn1k′s1〉[1 + ss1e

i(θk′ −θk)], (41)

〈n1k′λ1|nks ′〉 = 1
2 〈fn1k′s1 |fnks ′ 〉[1 + s ′s1e

−i(θk′ −θk)]. (42)

FIG. 3. Ladder resummation for the spin-dependent part of the
dressed charge current density vertex. The dashed line represents
the correlation between propagators scattering off the same impurity
site.

By observing that k′
x = k′ cos θk′ , one can perform the integra-

tion over the direction of k′ in the expression of γ
(2)nn
ss ′ (k),

1

4

∫ 2π

0

dθk′

2π
[1 + ss1e

i(θk′ −θk)] cos θk′ [1 + s ′s1e
−i(θk′ −θk)]

= s1

8
[se−iθk + s ′eiθk ], (43)

to get

γ
(2)nn
ss ′ (k) = (cos θk σz,ss ′ + sin θk σy,ss ′ )

16πN0τ

∑
n1k′s1

s1〈fnks |fn1k′s1〉

× 〈fn1k′s1 |fnks ′ 〉GR
n1k′s1

k′

m
GA

n1k′s1
. (44)

Approximating 〈fnks |fn1k′s1〉 ∼ δnn1 , summing over s1, and
integrating over k with the technique shown in the Appendix
yields

γ
(2)nn
ss ′ (k) =−(cos θk σz,ss ′ + sin θk σy,ss ′ )E0n

2
(
e1 + 2e3k

2
Fn

)
,

(45)

where we have introduced the spin-averaged Fermi momentum
in the nth subband

k2
Fn

2m
= μ − E0n

2. (46)

On the other hand, γ
(1)nn
ss ′ (k) is given by

γ
(1)nn
ss ′ (k) = (cos θk σz,ss ′ + sin θk σy,ss ′ )E0n

2
(
e1 + e3k

2
Fn

)
,

(47)

where k has been replaced by kFn at the required level of
accuracy. Combining γ

(1)nn
ss ′ (k) and γ

(2)nn
ss ′ (k) as mandated by

Eq. (39), we finally obtain

γ nn
x,ss ′ (k) = −(cos θk σz,ss ′ + sin θk σy,ss ′ )E0n

2e3k
2
Fn . (48)

Next, we project the equation for the vertex corrections in the
basis of the eigenstates and get the following integral equation:

�nn
x,ss ′ (k) = γ nn

x,ss ′ (k) + 1

2πN0τ

∑
n1n2k′s1s2

〈nks|n1k′s1〉

×GR
n1k′s1

�n1n2
x,s1s2

(k′)GA
n2k′s2

〈n2k′s2|nks ′〉,
(49)

which, by confining to intraband processes only, can be
solved with the ansatz �nn

x,ss ′ (k) = �n(kFn)[cos(θk)(σz)ss ′ +
sin(θk)(σy)ss ′ ] yielding

�nn
x,ss ′ (k) = γ nn

x,ss ′ (k)
τ

(n)
DP

τ
. (50)

By performing the integral over momentum and summing over
the spin indices in Eq. (33), one obtains the SHC as

σ SHE =
nc∑

n=1

e

8π

2τ

τ
(n)
DP

�n(kFn)

	EnkFn
/kFn

, (51)

where nc is the number of occupied bands.
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If vertex corrections are ignored, i.e., if we approximate
�n(kFn) = 	EnkFn

/kFn [cf. Eq. (36)], Eq. (51) gives us

σ SHE
drift =

nc∑
n=1

e

8π

2τ

τ
(n)
DP

, (52)

which, in the weak disorder limit (τ → ∞), reproduces the
result of Ref. [41], i.e., σ SHE

drift = (e/8π )nc.
If instead the renormalized vertex (50) is properly taken

into account, we obtain

σ SHE = −
nc∑
n

e

4π

e3k
2
Fn

e1 + e3k
2
Fn

. (53)

Notice that, being proportional to λ4
± (e1 ∝ λ2

±, e3 ∝ λ6
±),

this result is consistent with the result obtained in Ref. [40]
for a different but related model. Making use of the explicit
expressions for e1 and e3, we finally get the previously reported
result of Eq. (10).

IV. EDELSTEIN CONDUCTIVITY

In the dc limit, i.e., for ω → 0, the Edelstein conductivity
(EC) is defined by

σ EE = lim
ω→0

Im〈〈sy ; jx〉〉
ω

. (54)

That can be written as

σ EE = − lim
ω→0

Im
e

ω

∑
nn′kk′ss ′

〈n′k′s ′|v̂x |nks〉〈nks|sy |n′k′s ′〉

×
∫ ∞

−∞

dε

2π
Gns(ε+,k)Gn′s ′ (ε−,k′). (55)

After performing the integral over frequency we get

σ EE = − e

2π

∑
nn′kss ′

〈n′ks ′|v̂x |nks〉〈nks|sy |n′ks ′〉GR
nksG

A
n′ks ′ ,

(56)

where we have used again the orthogonality of the eigenvectors
with different momentum. As shown in Fig. 2, we consider the
bare vertex for the spin density sy = σy/2 and the two vertices
for the number current density v̂x = �̂x + kx/m [37], �̂x being
the renormalized spin-dependent part of the vertex. Clearly,
the two parts of the number current vertex yield two separate
contributions to the EC and we are now going to evaluate them
separately. We then evaluate Fig. 2(a) as

σ EE,(a) = − e

4πm

∑
nn′kss ′

〈n′ks ′|kx |nks〉

× 〈nks|σy |n′ks ′〉GR
nksG

A
n′ks ′ , (57)

where the matrix elements of the spin vertex are

〈nks|σy |n′ks ′〉 = 〈fnks |fn′ks ′ 〉(cos θk σz,ss ′ − sin θk σy,ss ′ ).

(58)

Setting n′ = n and using Eq. (26) for the energy eigenval-
ues, we can perform the integration over the momentum in

Eq. (57) obtaining for σ EE,(a) the expression

σ EE,(a) =
nc∑

n=1

eN0τE0n
2
(
e1 + 2e3k

2
Fn

)
. (59)

Next, we evaluate Fig. 2(b) as

σ EE,(b) = − e

4π

∑
nn′kss ′

〈n′ks ′|�̂x |nks〉〈nks|σy |n′ks ′〉

×GR
nksG

A
n′ks ′ , (60)

We set n = n′ and insert the result obtained in Eq. (50)
for 〈nks ′|�̂x |nks〉. Since both the matrix elements of �̂x and
σy contain terms proportional to cos(θk) and sin(θk), we must
distinguish between s = s ′ [first term in Eq. (48)] and s �= s ′
[second term in Eq. (48)]. If s = s ′ we have

σ
EE,(b)
1 = − e

4π

∑
nks

〈ns|�̃x |nks〉〈nks|σy |nks〉GR
nksG

A
nks .

(61)

The integral over the momentum can be done with the
technique shown in the Appendix to yield

σ
EE,(b)
1 =

nc∑
n

eN0τE0n
2e3k

2
Fn

τ
(n)
DP

2τ
. (62)

If s �= s ′, we have instead

σ
EE,(b)
2 = − e

4π

∑
nks

〈nks̄|�̃x |nks〉〈nks|σy |nk′s̄〉GR
nksG

A
nks̄ .

(63)

So, we can conclude that

σ
EE,(b)
2 =

nc∑
n=1

eN0τE0n
2 e3k

2
Fn(

2τ	EnkFn

)2 (64)

with 	EnkFn
defined in Eq. (12). Combining the (a) and (b)

contributions, the final result for the Edelstein conductivity is
found to be

σ EE =
nc∑

n=1

eN0τE0n
2
[
e1 + 3e3k

2
Fn + 2e3k

2
Fn(

2τ	EnkFn

)2

]
, (65)

which is easily seen to be equivalent to Eq. (11).

V. DISCUSSION

The two central results (65) and (53) may be interpreted
along the lines outlined in the Introduction. We begin by
noticing that both conductivities are expressed as simple sums
of independent subband contributions, hence, the relation (8)
is valid separately within each subband. The second step is
the identification of the quantity τs/Lso for a given subband.
Clearly, τs must be identified with the Dyakonov-Perel
relaxation time τ

(n)
DP defined in (14). For the spin-orbit length

Lso, one notices that the quantity 2αpF in the Rashba model
corresponds to the band splitting, and hence must here be
replaced by 2	EnkFn

. This yields, after restoring � in the
following,

L(n)
so = �vFn

2	EnkFn

, (66)
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2ΔEnkFnsτ0.2 0.5 1.0 2.0 5.0 10.0

10.0

5.0

2.0

20.0

3.0

1.5

15.0

7.0

σEE

”Trusted” region

FIG. 4. Value of the EC in units of the “normal” values eN0ατ as
a function of 2	EnkFnsτ . In our model α corresponds to E0n

2(e1 +
e3k

2
Fn). The value of τ is fixed, and we can see the dependence of

the EC on the spin-splitting energy. Notice that the curve can not be
trusted in the extreme diffusive limit 2	EnkFn

τ � 1 since, in this
regime, additional relaxation mechanisms due to interband effects
arise (cf. discussion at the end of the section) and the divergence
of the enhancement is stopped. The gray area estimates the region
where interband corrections are expected to become progressively
more relevant.

i.e., τs/Lso → τ
(n)
DP/L(n)

so . With this prescription one can apply
Eq. (8) subband by subband and obtain

σ EE,(n) = τ
(n)
DP

L
(n)
so

[
σ SHE,(n) − σ

SHE,(n)
drift

]
, (67)

where σ SHE,(n),σ
SHE,(n)
drift stand for the nth band contributions to

Eqs. (53) and (52), respectively. It is now immediate to see
that a sum over the subbands leads to the EC of Eq. (65).
We may thus conclude the following: a nonvanishing SHC
in the presence of Rashba spin-orbit coupling gives rises to
an anomalous EC scaling with the inverse scattering time;
conversely, an anomalous EC yields a nonvanishing SHC.

Some experimental studies [47,48] show that devices of the
type shown in Fig. 1 could present giant spin-orbit coupling.
Following Ref. [47], a metallic film of 10 monatomic layers of
Al (d ≈ 1 nm) shows a large spin-splitting energy of 	EnkFn

=
240 meV in the second band (n = 2). Introducing these values
in our model, with a barrier of V ≈ 4 eV, one can find a
value for λ ≈ 4.9 × 10−9 cm. We should remember that in
this experiment there is only one interfacial barrier (the other
barrier is the vacuum) so we will assume that only λ+ survives.
With these values, one obtains σ SHE ≈ −0.29 × e/(8π ) which
seems an encouraging result. In Fig. 4, we report the EC in
units of the “normal” value as a function of 2	EnkFn

τ .
We now consider two physically interesting limiting cases

of the general solution:
(1) the insulator-metal-vacuum junction λ− � λ+ ≡ λ,

V− � V+ ≡ V ;
(2) films with the same spin-orbit constant coupling at the

two interfaces λ− = λ+ = λ.
In the first case, we get

σ EE =
nc∑
n

2eN0τE0n
2λ2

d�

(
1 + �

2π2V

8τ 2E3
0n

4

)
, (68)

σ SHE = −
nc∑
n

e

4π�3
2mk2

FnV λ4. (69)

There are some experimental studies of metal-metal-vacuum
junctions that show giant spin-orbit coupling [47] and where
one could test the prediction of Eqs. (68) and (69). Although
Eq. (69) is obtained for small values of the parameter
2mk2

FnV λ4/�
2 � 1, the structure of the result is quite inter-

esting: it suggests that this kind of device, the insulator-metal-
vacuum junction, could be an efficient spintronic device, its
transport properties being proportional to the barrier height V .

In the second case, let us first assume a “quasisymmetric”
configuration, i.e., although λ+ = λ− ≡ λ, the barrier heights
are different V+ �= V−. We then obtain that the spin splitting of
the bands vanishes to linear order in k (e1 = 0) (see footnote 3)
so that

σ SHE = −
nc∑
n

e

4π�
(70)

and

σ EE =
nc∑
n

eN0τ
	EnkFn

kFn�

[
3 + �

2

2
(
τ	EnkFn

)2

]
. (71)

The SHC in this limit is independent of λ. This very striking
result is reminiscent of the universal result e

8π�
obtained

for a single Bychkov-Rashba band when vertex corrections
are ignored [4]. However, vertex corrections are now fully
included, yet the SHC is not only finite, but independent of
λ and equal to the single-band universal result multiplied
by a factor −2! We emphasize that this result has nothing
to do with the nonvanishing intrinsic SHC that arises in
certain generalized models of spin-orbit coupling with winding
number higher than 1 [49]. Rather, it has everything to do with
the k dependence of the transverse subbands describing the
electron wave function in the z direction. We also find that the
anomalous part of the Edelstein effect becomes large, as it is
proportional to 1/	EnkFn

, and the splitting vanishes with the
third power of k at small k.

Let us finally discuss the fully inversion-symmetric limit
of the model λ+ = λ− and V+ = V−. We notice that in this
case the limit of Eq. (53) does not exist because both e1 and e3

vanish (the spin splitting is identically zero!), while the value
of Eq. (53) depends on the order in which e1 and e3 tend to zero,
in particular on whether they tend to zero simultaneously, or e1

tend to zero before e3, as in the “quasisymmetric” case above.
The origin of this apparently unphysical nonanalytic behavior
can be traced back to the singular character of the vertex (50)
for vanishing spin splitting. Under these circumstances, the
Dyakonov-Perel spin relaxation time (14) diverges, apparently
implying spin conservation. However, even in the inversion-
symmetric limit, interband effects provide spin relaxation pro-
cesses which regularize the vertex. Such effects are typically
negligible away from the inversion-symmetric limit since they
are proportional to the square of the wave-function overlap be-
tween different bands and therefore scale as (d±/d)2. However,
in the inversion-symmetric limit, they can not be neglected.

A full analysis of interband effects is beyond the scope of
this paper, and we limit ourselves to a heuristic discussion of
the physical origin of the spin relaxation mechanism due to
interband virtual transitions. In the inversion-symmetric limit,
the Hamiltonian is invariant upon the simultaneous operations
of space inversion along the z axis (z → −z) and helicity
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flipping (s → −s), i.e., a full mirror reflection in the x-y plane.
Hence, the eigenfunctions can be classified as even or odd
under such a reflection:

fnks(z) = Pnfnk−s(−z), (72)

where Pn = ±1. Furthermore, the parity eigenvalue Pn is the
same as in the absence of spin-orbit interaction because the
reflection commutes with the spin-orbit interaction: Pn = 1
for odd n and Pn = −1 for even n.

Since states of opposite helicity are degenerate, one can
construct, in each band n, states that are linear combinations
of the helicity eigenstates |±〉. Among these, the two states
of maximal spin polarization in the positive and negative z

direction are

ψnk↑ = 1
2 [fnk+(z)|+〉 + fnk−(z)|−〉], (73)

ψnk↓ = 1
2 [fnk+(z)|+〉 − fnk−(z)|−〉]. (74)

That these are states of maximal polarization can be seen by
expressing them in terms of the eigenstates |↑〉 and |↓〉 of σz:

ψnk↑ = fnk+(z) + fnk−(z)

2
|↑〉 + ieiθk

fnk+(z) − fnk−(z)

2
|↓〉,
(75)

ψnk↓ = fnk+(z) − fnk−(z)

2
|↑〉 + ieiθk

fnk+(z) + fnk−(z)

2
|↓〉.
(76)

When the spin-orbit interaction is weak, one has fnk+(z) �
fnk−(z) so the first state is almost entirely “up” and the
second one is almost entirely “down.” One sees immediately
that, within the first Born approximation, impurity scattering
can not produce spin flipping within a band character-
ized by a certain value of n because the matrix element
of the z-independent disorder potential between ψnk↑ and
ψnk′↓ vanishes by virtue of Eq. (72). Thus, the ordinary
Elliot-Yafet mechanism of spin relaxation is absent in this
model.

On the other hand, spin flipping may occur in the second
Born approximation by going through an intermediate state in
a band of opposite parity. For example, an electron may first
jump, under the action of the disorder potential, to a state of
opposite spin in an unoccupied band of opposite parity; then, in
a second step it may return to the original band without flipping
its spin. Alternatively, the spin may remain unchanged in the
transition to the unoccupied band, and flip on the way back to
the original band. As a result of such processes, and of possible
subtle interference effects between them, a new mechanism of
spin relaxation arises, which we call interband spin relaxation,
with rate τ−1

IB .
We may estimate its order of magnitude by considering

that it must be controlled by the ratio of the momentum
relaxation rate ∼1/τ and the interband energy separation
EIB. Hence, in second-order perturbation theory in the small
effective expansion parameter 1/EIBτ [cf. Eq. (16)], we
expect γIB ∼ (1/τ )(EIBτ )−2 ∼ τ−3. This is different from
the standard Elliott-Yafet spin relaxation rate, which scales
as ∼τ−1.

When this additional relaxation mechanism is taken into
account, the diverging DP relaxation time in Eq. (50) for the
vertex is replaced by the finite total spin relaxation time (τ−1

DP +
τ−1

IB )−1. Thus, the nonanalyticity is cured.
The regime analyzed in this paper corresponds to the

situation in which τ−1
DP � τ−1

IB , and interband spin relaxation
can be neglected. The latter is expected to become relevant
when τ−1

DP ∼ τ−1
IB , which means 	EnkFnsτ ∼ (EIBτ )−1 ∼ 0.1.

Clearly, when looking at the fully symmetric limit, with
vanishing spin splitting, interband relaxation must be taken
into account, together with interband contributions to the SHC
and EC. Once more, a full-fledged treatment of this regime is
beyond the scope of this work.

VI. CONCLUSIONS

We have developed a simple model for describing spin
transport effects and spin-charge conversion in heterostruc-
tures consisting of a metallic film sandwiched between two
different insulators. All the effects we have considered depend
crucially on the three-dimensional nature of the system, in
particular, the fact that the transverse wave functions depend
on the in-plane momentum, and on the lack of inversion
symmetry caused by the different properties of the top and
bottom metal-insulator interfaces, each characterized by a
different barrier height (gap) and spin-orbit coupling strength.
After a careful consideration of vertex corrections, we find that
the model supports a nonzero intrinsic SHC, in sharp contrast
to the 2DEG Rashba case. Strikingly, in a “quasisymmetric”
junction, the SHC reaches a maximal and universal value. We
have also calculated the Edelstein effect for the same model
and found that the induced spin polarization is the sum of
two different contributions. The first one is analogous to the
term found in the 2DEG Rashba case, whereas the second
“anomalous” one has a completely different nature. Namely, it
is inversely proportional to the scattering time, indicating that it
is caused by the combined action of multiple electron-impurity
scattering and spin-orbit coupling. We have also discussed
the general connection between the nonvanishing SHC and
the anomalous term in the EC. Furthermore, by Onsager’s
reciprocity relations, our results are immediately relevant to the
inverse Edelstein effect [34,42,50], in which a nonequilibrium
spin density induces a charge current. The above features,
although discussed here for a specific model, are expected
to be general, proper to any nonstrictly two-dimensional
system in which the spin-orbit interaction is nonhomogeneous
across the confining direction. Technical applications of this
idea could lead to a new class of spin-orbit-coupling-based
devices.
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APPENDIX: INTEGRALS OF GREEN’S FUNCTIONS

To perform the integral of Eq. (57), we exploit the
poles with the Cauchy theorem of residues. We use the
formulas [37]∑

k

GR
nksG

A
nksf (k) = 2πNnsτf (kFns), (A1)

∑
k

GR
nk−GA

nk+f (k) = 2πN0τ

1 − i2τ	EnkFn

f (kFn
), (A2)

where f (k) is assumed to be regular, Nns is the density
of states in the n subband, and kFns is the corresponding
momentum. Following Ref. [40], the expression for both
the density of states and the Fermi momentum can be
obtained in terms of the coefficients of the energy eigenvalues

expansion

kFns = kFn + E0n
2

[
s
e1

2
− e2

1

8kFn

− s

(
e1e2

2
− e3k

2
Fn

2

)]
,

(A3)

Nns = N0

{
1 + E0n

2

[
s

e1

2kFn

− e2

+ s

(
e1e2

kFn

− 3e3kFn

2
− e3

1

16k3
Fn

)]}
. (A4)

Hence, for instance,∑
ks

sGR
nksG

A
nksk = 2πτ

∑
s

skFnsNns = E0n
2
(
e1 + 2e3k

2
Fn

)
.

(A5)
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