29 research outputs found

    Evidence for strong, widespread chlorine radical chemistry associated with pollution outflow from continental Asia

    Get PDF
    The chlorine radical is a potent atmospheric oxidant, capable of perturbing tropospheric oxidative cycles normally controlled by the hydroxyl radical. Significantly faster reaction rates allow chlorine radicals to expedite oxidation of hydrocarbons, including methane, and in polluted environments, to enhance ozone production. Here we present evidence, from the CARIBIC airborne dataset, for extensive chlorine radical chemistry associated with Asian pollution outflow, from airborne observations made over the Malaysian Peninsula in winter. This region is known for persistent convection that regularly delivers surface air to higher altitudes and serves as a major transport pathway into the stratosphere. Oxidant ratios inferred from hydrocarbon relationships show that chlorine radicals were regionally more important than hydroxyl radicals for alkane oxidation and were also important for methane and alkene oxidation (>10%). Our observations reveal pollution-related chlorine chemistry that is both widespread and recurrent, and has implications for tropospheric oxidizing capacity, stratospheric composition and ozone chemistry

    Reversible Modulation of Spontaneous Emission by Strain in Silicon Nanowires

    Get PDF
    We computationally study the effect of uniaxial strain in modulating the spontaneous emission of photons in silicon nanowires. Our main finding is that a one to two orders of magnitude change in spontaneous emission time occurs due to two distinct mechanisms: (A) Change in wave function symmetry, where within the direct bandgap regime, strain changes the symmetry of wave functions, which in turn leads to a large change of optical dipole matrix element. (B) Direct to indirect bandgap transition which makes the spontaneous photon emission to be of a slow second order process mediated by phonons. This feature uniquely occurs in silicon nanowires while in bulk silicon there is no change of optical properties under any reasonable amount of strain. These results promise new applications of silicon nanowires as optoelectronic devices including a mechanism for lasing. Our results are verifiable using existing experimental techniques of applying strain to nanowires

    Synthetic utility of 5-amino-6-cyano-2-phenylthieno[2,3-d] oxazole

    No full text
    This paper describes the synthesis of 5-amino-6-cyano-2-phenylthieno[2,3-d]oxazole and its utilization for the preparation of a range of azo disperse dyes. These aryl azo disperse dyes were applied on polyester fabric and their fastness properties were evaluated. The dyes were characterized by NMR and IR spectroscopy. The visible absorption spectra of these dyes were recorded

    Original scientific paper Synthetic utility of 5-amino-6-cyano-2-phenylthieno[2,3-d] oxazole

    No full text
    Abstract: This paper describes the synthesis of 5-amino-6-cyano-2-phenylthieno[2,3-d]oxazole and its utilization for the preparation of a range of azo disperse dyes. These aryl azo disperse dyes were applied on polyester fabric and their fastness properties were evaluated. The dyes were characterized by NMR and IR spectroscopy. The visible absorption spectra of these dyes were recorded

    Cis-regulatory effect of HPV integration is constrained by host chromatin architecture in cervical cancers.

    No full text
    HPV infections are the primary drivers of cervical cancers, and often HPV DNA gets integrated into the host genome. Although the oncogenic impact of HPV encoded genes is relatively well known, the cis-regulatory effect of integrated HPV DNA on host chromatin structure and gene regulation remains less understood. We investigated genome-wide patterns of HPV integrations and associated host gene expression changes in the context of host chromatin states and TADs. HPV integrations were significantly enriched in active chromatin regions and depleted in inactive ones. Interestingly, regardless of chromatin state, genomic regions flanking HPV integrations showed transcriptional upregulation. Nevertheless, upregulation (both local and long-range) was mostly confined to TADs with integration, but not affecting adjacent TADs. Few TADs showed recurrent integrations associated with overexpression of oncogenes within them (e.g. MYC, PVT1, TP63 and ERBB2) regardless of proximity. Hi-C and 4C-seq analyses in cervical cancer cell line (HeLa) demonstrated chromatin looping interactions between integrated HPV and MYC/PVT1 regions (~500kb apart), leading to allele-specific overexpression. Based on these, we propose HPV integrations can trigger multimodal oncogenic activation to promote cancer progression

    Multimodal facial gender and ethnicity identification

    No full text
    Human faces provide demographic information, such as gender and ethnicity. Different modalities of human faces, e.g., range and intensity, provide different cues for gender and ethnicity identifications. In this paper we exploit the range information of human faces for ethnicity identification using a support vector machine. An integration scheme is also proposed for ethnicity and gender identifications by combining the registered range and intensity images. The experiments are conducted on a database containing 1240 facial scans of 376 subjects. It is demonstrated that the range modality provides competitive discriminative power on ethnicity and gender identifications to the intensity modality. For both gender and ethnicity identifications, the proposed integration scheme outperforms each individual modality.
    corecore