270 research outputs found
Determination of the Superconductor-Insulator Phase Diagram for One-Dimensional Wires
We establish the superconductor-insulator phase diagram for quasi-one
dimensional wires by measuring a large set of MoGe nanowires. This diagram is
consistent with the Chakravarty-Schmid-Bulgadaev phase boundary, namely with
the critical resistance being equal to R_Q = h/4e^2. We find that transport
properties of insulating nanowires exhibit a weak Coulomb blockade behavior.Comment: 5 pages, 4 figure
Nuclear structure beyond the neutron drip line: the lowest energy states in He via their T=5/2 isobaric analogs in Li
The level structure of the very neutron rich and unbound He nucleus has
been the subject of significant experimental and theoretical study. Many recent
works have claimed that the two lowest energy He states exist with spins
and and widths on the order of hundreds of keV.
These findings cannot be reconciled with our contemporary understanding of
nuclear structure. The present work is the first high-resolution study with low
statistical uncertainty of the relevant excitation energy range in the
He system, performed via a search for the T=5/2 isobaric analog states
in Li populated through He+p elastic scattering. The present data show
no indication of any narrow structures. Instead, we find evidence for a broad
state in He located approximately 3 MeV above the neutron
decay threshold
Extreme alpha-clustering in the 18O nucleus
The structure of the 18O nucleus at excitation energies above the alpha decay
threshold was studied using 14C+alpha resonance elastic scattering. A number of
states with large alpha reduced widths have been observed, indicating that the
alpha-cluster degree of freedom plays an important role in this N not equal Z
nucleus. However, the alpha-cluster structure of this nucleus is very different
from the relatively simple pattern of strong alpha-cluster quasi-rotational
bands in the neighboring 16O and 20Ne nuclei. A 0+ state with an alpha reduced
width exceeding the single particle limit was identified at an excitation
energy of 9.9+/-0.3 MeV. We discuss evidence that states of this kind are
common in light nuclei and give possible explanations of this feature.Comment: 4 pages, 2 figures, 1 table. Resubmission with minor changes for
clarity, including removal of one figur
Molecular Structures in T=1 states of 10B
Multi-center (molecular) structures can play an important role in light
nuclei. The highly deformed rotational band in 10Be with band head at 6.179 MeV
has been observed recently and suggested to have an exotic alpha:2n:alpha
configuration. A search for states with alpha:pn:alpha two-center molecular
configurations in 10B that are analogous to the states with alpha:2n:alpha
structure in 10Be has been performed. The T=1 isobaric analog states in 10B
were studied in the excitation energy range of E=8.7-12.1 MeV using the
reaction 1H(9Be,alpha)6Li*(T=1, 0+, 3.56 MeV). An R-matrix analysis was used to
extract parameters for the states observed in the (p,alpha) excitation
function. Five T=1 states in 10B have been identified. The known 2+ and 3-
states at 8.9 MeV have been observed and their partial widths have been
measured. The spin-parities and partial widths for three higher lying states
were determined. Our data support theoretical predictions that the 2+ state at
8.9 MeV (isobaric analog of the 7.54 MeV state in 10Be) is a highly clustered
state and can be identified as a member of the alpha:np:alpha rotational band.
The next member of this band, the 4+ state, has not been found. A very broad 0+
state at 11 MeV that corresponds to pure alpha+6Li(0+,T=1) configuration is
suggested and it might be related to similar structures found in 12C, 18O and
20Ne.Comment: 10 pages, 10 figures, accepted in Physical Review
Elastic scattering measurements for the 10C + 208Pb system at Elab = 66 MeV
Background: The influence of halo structure of 6
He, 8
B, 11Be, and 11Li nuclei in several mechanisms such as
direct reactions and fusion is already established, although not completely understood. The influence of the 10C
Brunnian structure is less known.
Purpose: To investigate the influence of the cluster configuration of 10C on the elastic scattering at an energy
close to the Coulomb barrier.
Methods: We present experimental data for the elastic scattering of the 10C + 208Pb system at Elab = 66 MeV.
The data are compared to the three- and the four-body continuum-discretized coupled-channels calculations
assuming 9
B +p, 6
Be +α, and 8
Be +p + p configurations.
Results: The experimental angular distribution of the cross sections shows the suppression of the Fresnel peak
that is reasonably well reproduced by the continuum-discretized coupled-channels calculations. However, the
calculations underestimate the cross sections at backward angles. Couplings to continuum states represent a
small effect.
Conclusions: The cluster configurations of 10C assumed in the present work are able to describe some of the
features of the data. To explain the data at backward angles, experimental data for the breakup and an extension
of theoretical formalism towards a four-body cluster seem to be in need to reproduce the measured angular
distribution.Ministerio de España de EconomÃa y Competitividad, el Foro Regional Europeo Fondo de Desarrollo (FEDER) FIS2017- 88410-PPrograma Horizonte 2020 de la Unión Europea Subvención No. 654002Fondos SID 2019 (Università degli Studi di Padova, Italia) CASA_SID19_01
Reactive synthesis of Ti-Al intermetallics during microwave heating in an E-field maximum
The time-resolved X-ray diffraction synchrotron radiation technique was used in combination with E-field microwave heating to study in situ the kinetics of intermetallic phase formation in the Ti-Al system. The reaction of Ti with Al is triggered by the melting and spreading of Al onto the surface of Ti particles. The tetragonal TiAl 3 phase is the primary reaction product, formed by instantaneous nucleation at the interface between the unreacted Ti cores and the Al melt. The growth of TiAl 3 layers is diffusion-controlled. These preliminary results demonstrate that microwave heating can be used to rapidly synthesise intermetallic phases from high-purity elemental powders. © 2010 Elsevier B.V. All rights reserved.This work has been supported by the Swiss National Science Foundation (Grant 20PA21E-129193).Vaucher, S.; Stir, M.; Ishizaki, K.; Catalá Civera, JM.; Nicula, R. (2011). Reactive synthesis of Ti-Al intermetallics during microwave heating in an E-field maximum. Thermochimica Acta. 522(1):151-154. doi:10.1016/j.tca.2010.11.026S151154522
- …