100 research outputs found

    Propionic Acid Produced by Propionibacterium acnes Strains Contributes to Their Pathogenicity

    Get PDF
    Propionibacterium acnes is an important member of the skin microbiome. The bacterium can initiate signalling events and changes in cellular properties in keratinocytes. The aim of this study was to analyse the effect of the bacterium on an immortalized human keratinocyte cell line. The results show that various P. acnes strains affect the cell-growth properties of these cells differentially, inducing cytotoxicity in a strain-specific and dosedependent manner. We propose that bacterially secreted propionic acid may contribute to the cytotoxic effect. This acid has a role in maintaining skin pH and exhibits antimicrobial properties, but may also have deleterious effects when the local concentration rises due to excessive bacterial growth and metabolism. These results, together with available data from the literature, may provide insight into the dual role of P. acnes in healthy skin and during pathogenic conditions, as well as the key molecules involved in these functions. Key words: immortalized keratinocyte cell line (HPV-KER); Propionibacterium acnes; acne vulgaris; short-chain fatty acid; propionic acid

    Enhancing the Translational Capacity of E. coli by Resolving the Codon Bias

    Get PDF
    Escherichia coli is a well-established and popular host for heterologous expression of proteins. The preference in the choice of synonymous codons (codon bias), however, might differ for the host and the original source of the recombinant protein, constituting a potential bottleneck in production. Codon choice affects the efficiency of translation by a complex and poorly understood mechanism. The availability of certain tRNA species is one of the factors that may curtail the capacity of translation. Here we provide a tRNA-overexpressing strategy that allows the resolution of the codon bias, and boosts the translational capacity of the popular host BL21(DE3) when rare codons are encountered. In the BL21(DE3)-derived strain, called SixPack, copies of the genes corresponding to the six least abundant tRNA species have been assembled in a synthetic fragment and inserted into a rRNA operon. This arrangement, while not interfering with the growth properties of the new strain, allows dynamic control of the transcription of the extra tRNA genes, providing significantly elevated levels of the rare tRNAs in the exponential growth phase. Results from expression assays of a panel of recombinant proteins of diverse origin and codon composition showed that the performance of SixPack surpassed that of the parental BL21(DE3) or a related strain equipped with a rare tRNA-expressing plasmid

    The small molecule AUTEN-99 (autophagy enhancer-99) prevents the progression of neurodegenerative symptoms

    Get PDF
    Autophagy functions as a main route for the degradation of superfluous and damaged constituents of the cytoplasm. Defects in autophagy are implicated in the development of various age-dependent degenerative disorders such as cancer, neurodegeneration and tissue atrophy, and in accelerated aging. To promote basal levels of the process in pathological settings, we previously screened a small molecule library for novel autophagy-enhancing factors that inhibit the myotubularin-related phosphatase MTMR14/Jumpy, a negative regulator of autophagic membrane formation. Here we identify AUTEN-99 (autophagy enhancer-99), which activates autophagy in cell cultures and animal models. AUTEN-99 appears to effectively penetrate through the blood-brain barrier, and impedes the progression of neurodegenerative symptoms in Drosophila models of Parkinson's and Huntington's diseases. Furthermore, the molecule increases the survival of isolated neurons under normal and oxidative stress-induced conditions. Thus, AUTEN-99 serves as a potent neuroprotective drug candidate for preventing and treating diverse neurodegenerative pathologies, and may promote healthy aging

    The effect of a preparation of minerals, vitamins and trace elements on the cardiac gene expression pattern in male diabetic rats

    Get PDF
    BACKGROUND: Diabetic patients have an increased risk of developing cardiovascular diseases, which are the leading cause of death in developed countries. Although multivitamin products are widely used as dietary supplements, the effects of these products have not been investigated in the diabetic heart yet. Therefore, here we investigated if a preparation of different minerals, vitamins, and trace elements (MVT) affects the cardiac gene expression pattern in experimental diabetes. METHODS: Two-day old male Wistar rats were injected with streptozotocin (i.p. 100 mg/kg) or citrate buffer to induce diabetes. From weeks 4 to 12, rats were fed with a vehicle or a MVT preparation. Fasting blood glucose measurement and oral glucose tolerance test were performed at week 12, and then total RNA was isolated from the myocardium and assayed by rat oligonucleotide microarray for 41012 oligonucleotides. RESULTS: Significantly elevated fasting blood glucose concentration and impaired glucose tolerance were markedly improved by MVT-treatment in diabetic rats at week 12. Genes with significantly altered expression due to diabetes include functional clusters related to cardiac hypertrophy (e.g. caspase recruitment domain family, member 9; cytochrome P450, family 26, subfamily B, polypeptide; FXYD domain containing ion transport regulator 3), stress response (e.g. metallothionein 1a; metallothionein 2a; interleukin-6 receptor; heme oxygenase (decycling) 1; and glutathione S-transferase, theta 3), and hormones associated with insulin resistance (e.g. resistin; FK506 binding protein 5; galanin/GMAP prepropeptide). Moreover the expression of some other genes with no definite cardiac function was also changed such as e.g. similar to apolipoprotein L2; brain expressed X-linked 1; prostaglandin b2 synthase (brain). MVT-treatment in diabetic rats showed opposite gene expression changes in the cases of 19 genes associated with diabetic cardiomyopathy. In healthy hearts, MVT-treatment resulted in cardiac gene expression changes mostly related to immune response (e.g. complement factor B; complement component 4a; interferon regulatory factor 7; hepcidin). CONCLUSIONS: MVT-treatment improved diagnostic markers of diabetes. This is the first demonstration that MVT-treatment significantly alters cardiac gene expression profile in both control and diabetic rats. Our results and further studies exploring the mechanistic role of individual genes may contribute to the prevention or diagnosis of cardiac complications in diabetes

    JADES Imaging of GN-z11: Revealing the Morphology and Environment of a Luminous Galaxy 430 Myr after the Big Bang

    Get PDF
    We present JWST NIRCam nine-band near-infrared imaging of the luminous z = 10.6 galaxy GN-z11 from the JWST Advanced Deep Extragalactic Survey of the GOODS-N field. We find a spectral energy distribution (SED) entirely consistent with the expected form of a high-redshift galaxy: a clear blue continuum from 1.5 to 4 μm with a complete dropout in F115W. The core of GN-z11 is extremely compact in JWST imaging. We analyze the image with a two-component model, using a point source and a Sérsic profile that fits to a half-light radius of 200 pc and an index n = 0.9. We find a low-surface-brightness haze about 0.″4 to the northeast of the galaxy, which is most likely a foreground object but might be a more extended component of GN-z11. At a spectroscopic redshift of 10.60 (Bunker et al. 2023), the comparison of the NIRCam F410M and F444W images spans the Balmer jump. From population-synthesis modeling, here assuming no light from an active galactic nucleus, we reproduce the SED of GN-z11, finding a stellar mass of ∼109 M ⊙, a star formation rate of ∼20 M ⊙ yr−1, and a young stellar age of ∼20 Myr. Since massive galaxies at high redshift are likely to be highly clustered, we search for faint neighbors of GN-z11, finding nine galaxies out to ∼5 comoving Mpc transverse with photometric redshifts consistent with z = 10.6, and a tenth more tentative dropout only 3″ away. This is consistent with GN-z11 being hosted by a massive dark-matter halo (≈8 × 1010 M ⊙), though lower halo masses cannot be ruled out

    JADES Initial Data Release for the Hubble Ultra Deep Field: Revealing the Faint Infrared Sky with Deep JWST NIRCam Imaging

    Get PDF
    JWST has revolutionized the field of extragalactic astronomy with its sensitive and high-resolution infrared view of the distant Universe. Adding to the new legacy of JWST observations, we present the first NIRCam imaging data release from the JWST Advanced Deep Extragalactic Survey (JADES), providing nine filters of infrared imaging of ∼25 arcmin2 covering the Hubble Ultra Deep Field and portions of Great Observatories Origins Deep Survey South. Utilizing 87 on-sky dual-filter hours of exposure time, these images reveal the deepest ever near-infrared view of this iconic field. We supply carefully constructed nine-band mosaics of the JADES bands, as well as matching reductions of five additional bands from the JWST Extragalactic Medium-band Survey. Combining with existing Hubble Space Telescope imaging, we provide 23-band space-based photometric catalogs and photometric redshifts for ≈47,500 sources. To promote broad engagement with JADES, we have created an interactive FitsMap website to provide an interface for professional researchers and the public to experience these JWST data sets. Combined with the first JADES NIRSpec data release, these public JADES imaging and spectroscopic data sets provide a new foundation for discoveries of the infrared Universe by the worldwide scientific community
    corecore