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Abstract 

 

Escherichia coli is a well-established, and popular host for heterologous expression of proteins. 

The preference in the choice of synonymous codons (codon bias), however, might differ for the 

host and the original source of the recombinant protein, constituting a potential bottleneck in 

production. Codon choice affects the efficiency of translation by a complex and poorly 

understood mechanism. The availability of certain tRNA species is one of the factors that may 

curtail the capacity of translation. Here we provide a tRNA-overexpressing strategy that allows 

the resolution of the codon bias, and boosts the translational capacity of the popular host 

BL21(DE3) when rare codons are encountered. In BL21(DE3)-derived strain, called SixPack, 

copies of the genes corresponding to the six least abundant tRNA species have been assembled in 

a synthetic fragment and inserted into a ribosomal RNA operon. This arrangement, while not 

interfering with the growth properties of the new strain, allows dynamic control of the 

transcription of the extra tRNA genes, providing significantly elevated levels of the rare tRNAs in 

exponential growth phase. Results from expression assays of a panel of recombinant proteins of 

diverse origin and codon composition showed that the performance of SixPack surpassed that of 

the parental BL21(DE3) or a related strain equipped with a rare tRNA-expressing plasmid. 

 

Keywords: rare tRNA genes, genome editing, efficient translation, recombinant protein 

production, E. coli 

 

E. coli is by far the most widely used host organism for biopharmaceutical heterologous 

production of recombinant proteins. This expression platform is favored for its simplicity, speed, 

and low cost. The codon bias discrepancy, however, can seriously hinder protein expression in E. 
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coli 
1-5

. Choice in the usage of synonymous codons can be different in various organisms, and this 

bias has been shown to correlate with the relative and absolute quantities of individual tRNAs 
6,7

. 

Heterologous expression of a protein with a high ratio of codons occurring infrequently in E. coli 

might deplete the corresponding tRNA species, leading to translational frameshifting, codon 

skipping, misincorporations, and protein truncations 
8
. Ultimately, the codon bias seriously limits 

the use of E. coli as an expression platform. 

 

To overcome this problem, codon optimization or rare tRNA overexpression strategies have been 

applied, with limited success. On one hand, synthesis of the recombinant protein encoding gene 

with an E. coli codon preference is labor-intensive and expensive. Moreover, replacing rare 

codons with frequent ones does not necessarily lead to increased yield in protein synthesis. Codon 

choice might affect expression, solubility, and folding of a protein 
9-15

, and rare codons can, 

paradoxically, enhance the translation of a gene via reducing the mRNA secondary structure 

7,16,17
. Additionally, codon optimization by gene synthesis is not feasible when testing gene 

libraries. On the other hand, attempts to overexpress rare tRNA species by cloning extra copies of 

the corresponding tRNA encoding genes into a plasmid have their drawbacks as well. In such 

commercially available hosts, maintenance of the tRNA-expressing plasmid requires the addition 

of extra antibiotics (usually the protein synthesis inhibitor chloramphenicol); moreover, the 

recombinant protein-encoding expression plasmid must belong to a different complementation 

group. Using two antibiotics and/or permanently altering the balance of the various tRNA species 

can have a fitness cost on the host, eventually resulting in a low success rate in applications 
10,18

. 

 

We sought to resolve the codon bias problem by expressing rare tRNAs in a more dynamic 

fashion. We hypothesized that inserting extra copies of the relevant tRNA genes into a ribosomal 
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RNA (rrn) operon would harmonize their expression with the translational activity and would 

provide enhanced levels of rare tRNAs according to the actual needs. rrn operons have key roles 

in bacterial physiology and economy. Synthesis of rRNA quickly reacts to environmental 

conditions, determining ribosome availability via regulating the expression of ribosomal proteins 

by a translational feedback mechanism 
19

. In E. coli, there are seven nearly identical copies of 

rRNA operons. Synthesis of rRNA is driven by the strongest promoters found in the genome 
20

, 

and the rate of transcription can change more than an order of magnitude between poor and rich 

nutrient conditions 
21

. While most of the tRNA genes are scattered around the chromosome, all 

rRNA operons carry certain (but not any of the rare) tRNA genes as well, co-transcribed with the 

rRNA genes. 

 

We inserted extra copies of the six tRNA genes (argX, glyT, leuW, proL, argU, and ileX) 

corresponding to the minor codons of E. coli (CGG, GGA, CUA, CCC, AGA/AGG, and AUA, 

respectively) into one of the ribosomal RNA operons (rrnD) of BL21(DE3), the widely used E. 

coli expression host. We demonstrated that expression of these tRNA genes shows a marked 

increase in exponential growth phase, compared to the unmodified host. By testing the expression 

of a panel of recombinant proteins with a high ratio of rare codons in their genes, we showed that, 

in most cases, the modified strain that we named SixPack performs better and shows significantly 

enhanced expression of the heterologous proteins in classical IPTG-induction as well as in an 

auto-induction system. Moreover, compared to the commercially available strain 

Rosetta2(DE3)pLysS (Merck), which carries a similar array of extra tRNA genes on a plasmid 

(pLysSRARE2; Merck), SixPack proves to be a superior expression platform. 

 

Results 
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Design and genomic insertion of extra copies of tRNA genes 

Hypothetically, cloning extra copies of the genes corresponding to rare tRNAs into a rrn operon 

allows their controlled expression, as the activity of the operon is tightly regulated by nutrient 

availability and other physiological conditions 
22

. This might ensure that expression of the rare 

tRNAs is coupled to the actual need for translational capacity. 

 

The genes encoding for the six least abundant tRNA species were combined in a single, synthetic 

DNA fragment. The original copies of these genes are either single genes whose expression is 

controlled by their own promoter (proL, argU, or ileX), or are parts of polycistronic operons 

(argX, glyT, or leuW) (Figure S1). Since the process of maturation of the primary transcripts of 

tRNA genes is not thoroughly understood, the nucleotide sequences surrounding the genes in the 

synthetic fragment were designed to mimic the natural tRNA operons. The intergenic and 

flanking regions of the argX-glyT-leuW-proL segment were essentially identical to those of the 

natural argX-hisR-leuT-proM polycistronic operon. For argU and ileX, exact copies of the genes 

and their flanking sequences were fused to the 3’ end of the segment (Figure S2). 

 

For the genomic insertion site rrnD, one of the seven rrn operons was selected. Although the 

structure, sequence, and activity of the rrn operons of E. coli are very similar, the 3’ end of rrnD 

(containing trhV and rrfF) is unique, allowing specific targeting of the locus 
20

. 

 

The 1207-base synthetic operon carrying the six tRNA genes was engineered into the 3’ region of 

rrnD (Figure 1) by a multistep process using λRED recombineering, followed by elimination of 
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 6

the markers via CRISPR-Cas9-stimulated homologous recombination (Figure S3), resulting in 

strain SixPack. 

 

Growth properties of SixPack and control strains 

Altering the expression level of rare tRNAs might affect the speed of translation, co-translational 

folding of proteins and, consequently, the growth rate of E. coli 
23

. Apparently, insertion of the 

extra tRNA genes into rrnD did not disturb the homeostasis of the cell. The growth parameters of 

SixPack were identical to those of the parental BL21(DE3) in both LB and AIM (auto-induction 

medium). Signaling normal cellular operation, expression levels of two chaperons (DnaK and 

GroEL, the increase of which might be indicative of abnormal folding of native proteins) were 

not significantly altered (Figure S4). Noticeably, the commercially available 

Rosetta2(DE3)pLysS strain had a longer lag phase, lower growth rate, and lower maximum OD 

in both media, presumably owing to the burden of maintaining the plasmid and the presence of 

the antibiotic chloramphenicol in the media (Figure 2 and Table S1). 

 

Elevated expression of rare tRNAs 

Expression of the six rare tRNA genes was measured by qRT-PCR on first-strand cDNA 

generated from total RNA isolated from cultures of BL21(DE3) and SixPack in the exponential 

phase. Primers were designed to amplify both the unprocessed and the matured forms of the 

various tRNA species. In the case of SixPack, the measured rare tRNAs represented transcripts 

originating both from their original genomic copies and from the newly inserted fragment in 

rrnD. The rare tRNA ratios were normalized with the ratios of three control (abundant) tRNA 

species. 
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Compared to parental BL21(DE3), SixPack showed elevated expression (1.8- to 3.8-fold) of the 

six rare tRNAs (Figure 3). 

 

Despite being on the same cistron and transcribed together, increases in the expression levels of 

the extra tRNA genes were diverse (argU showing the highest and glyT the lowest increase). This 

might be due to several factors, including tRNA processing, stability, regulation, and diverse 

expression levels of the original genomic copies. 

 

Individual impact of elevated levels of the rare tRNAs on protein expression 

The functional effect of the increased levels of rare tRNAs was first tested separately for each 

tRNA species. To magnify the effect of rare tRNAs, we constructed IPTG-inducible, pETDuet-1-

based (Novagen) test plasmids expressing modified versions of the GFP gene under the 

regulation of the T7 promoter. GFP genes carrying runs of rare codons corresponded to each of 

the six extra tRNA genes (one GFP version corresponding to proL, ileX, argX, glyT, and leuW 

each, and two GFP versions for argU, as it relates to both AGA and AGG codons). The tandem 

rare codons (3 or 5 copies) were inserted into the GFP gene right after the ATG codon. 

Expressions of the modified GFPs were detected by fluorescence measurements and visualized 

by denaturing polyacrylamide gel electrophoresis (SDS-PAGE). 

 

IPTG- (or lactose-) induced expression of the GFP and its variants with rare codons had a 

negative but diverse impact on the growth of the strains. In LB medium, SixPack and BL21(DE3) 

usually showed similar growth patterns, and in most cases displayed higher growth parameters 

than Rosetta2(DE3)pLysS (Figure S5). In AIM, peculiarly, Rosetta2(DE3)pLysS reached the 

highest maximal optical density when GFP variants with rare codons were introduced (Figure 

Page 7 of 30

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 8

S6). The reason might lie in the low metabolic burden, attributable to the inefficient expression of 

the particular protein. (We note that using standard AIM, the induction of the T7 polymerase and, 

consequently, T7 promoter-driven genes might be below full capacity in Rosetta2(DE3)pLysS, 

and this might contribute to the low expression level.) 

 

Total fluorescence measurements of GFP production, however, showed a clear advantage of 

SixPack in both LB (Figure 4) and AIM (Figure S7). In both media, SixPack showed higher 

expression of the modified GFPs than the parental BL21(DE3) did. In one exception, there was 

no difference (3xGGA-GFP; GGA codon relates to glyT) (Figure S7H). Compared to 

Rosetta2(DE3)pLysS, SixPack showed higher expression in all cases. As an additional control, 

expression of GFP and 5xAGA-GFP were also tested in the other commercial strain 

Rosetta2(DE3). This strain, presumably due to the lack of T7 lysozyme, performed better than 

Rosetta2(DE3)pLysS (where introduction of LysS is intended to decrease background expression 

of the cloned gene), however, the expression levels were significantly lower than in SixPack 

(Figure S8). 

 

Results of the fluorescence measurements were further supported by protein gel assays. Equal 

amounts of proteins obtained from crude extracts of cultures collected after a 10 h incubation 

were analyzed on Coomassie Brilliant Blue-stained SDS-PAGE gels. Differences in the amounts 

of modified GFPs in the three strains were in clear correlation with the fluorescence data (Figure 

S9). 

 

Heterologous protein expression performance of SixPack and control strains 
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 9

The usefulness of SixPack was further tested by expressing a panel of eight protein-coding genes 

of diverse length and rare codon content (Table S2), selected from various species, including 

Drosophila melanogaster, Pyrococcus furiosus, Saccharomyces cerevisiae, Streptococcus 

pyogenes, and human papillomavirus (HPV). The genes were cloned into pETDuet-1 and 

expressed in SixPack and control strains under two different conditions (LB and AIM). 

 

The growth curves of IPTG- (or lactose-) induced cultures seemed to be quite diverse in LB 

(Figure S10), but rather uniform in AIM (Figure S11). Production of the specific proteins was 

visualized by using Coomassie-stained gels and Western blotting (Figure 5). In most cases, 

SixPack proved to be the best producer. This was especially evident when the ratio of rare codons 

was higher than 8% (and the ratio of tandems was also high), as in the cases of HumdCas9 

(dCas9 optimized to human codon preference), HumdCas9-GFP fusion, and Pfu DNA 

polymerase. In the case of EFT1, the ratio was only 4.3% (35 AGA and 2 CTA codons); but 

SixPack still produced the highest amount of this protein. It is conceivable that the translation 

efficiency is influenced not only by the total amount of rare codons, but also by the occurrence of 

tandem situations, the location of rare codons in the gene (e.g., close or far from the start site), 

and the ratios of the different rare codon species 
3
. In other cases (Asl, dCas9, Flfl, and HPV16 

L2), when the rare codon ratio was below 8%, production by SixPack was similar to that of 

BL21(DE3) in LB and similar to or better than that in AIM. In all cases, the performance of 

Rosetta2(DE3)pLysS lagged behind that of SixPack (especially evidently in AIM) or was similar 

at most (Figure 6). 

 

Usefulnesss of SixPack was further demonstrated by comparing the production of two versions of 

the same protein (dCas9, 5.4% rare codons vs. HumdCas9, 8,6% rare codons), which can be 
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 10

viewed as rare codon-containing and codon-optimized versions of the same protein. In this 

particular case, higher expression of HumdCas9 by SixPack versus dCas9 by BL21(DE3) clearly 

demonstrated the advantage of SixPack (Figure S12). 

 

Discussion 

 

Depletion of rare tRNA species evoked by the expression of heterologous proteins can 

compromise product yield and translational fidelity. Several attempts, both genetic 

(overexpression of rare tRNA genes from a plasmid, or codon optimization of the heterologous 

gene by synthesis) and non-genetic ones (optimizing the growth conditions, or using in vitro 

protein synthesis systems) have been applied with varying degrees of success 
2, 24-28

. We offer 

here a solution that resolves codon bias discrepancies with a high success rate, does not require 

additional antibiotics, and performs better or as well as the widely used BL21(DE3) E. coli strain. 

 

The novelty of the approach lies in placing the extra copies of rare tRNA genes into a ribosomal 

operon of the host chromosome. This arrangement offers the following benefits: (i) lack of 

physiological burden associated with plasmid replication and maintenance, (ii) genetic stability 

without the use of an antibiotic, and (iii) dynamic changes in the expression of rare tRNA genes, 

paralleling the actual translational activity. 

 

A ribosomal operon is a natural choice as a location for inserting tRNA genes. While most tRNA 

genes are scattered elsewhere in the genome, each of the rrn operons carries at least one tRNA 

gene (typically coding for abundant tRNAs). As anticipated, increased amounts of the rare 

tRNAs, corresponding to the inserted genes, were detected. However, when compared to the 
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 11

levels in the parental host BL21(DE3), the rate of increase in the exponential phase was only 

modest. An interplay of several factors, including co-factors of tRNA maturation, tRNA stability, 

and feedback regulation of the genes at the original locations, might mitigate the increase. This 

limited elevation in rare tRNA abundance might even be a fortuitous feature. Apparently, the 

increase is not high enough (the rare tRNAs remain minor components in the tRNA pool) to 

disturb normal physiological operation. 

 

The modest overexpression of the rare tRNAs had, however, a significant, positive effect on 

heterologous protein expression, mitigating the effect of tRNA depletion. Individually, with the 

exception of glyT in AIM, all the genes caused increased expression (up to 12-fold) of specific 

GFP variants carrying tandem copies of the corresponding rare codon. The combined effect of the 

six extra genes was then clearly demonstrated by expressing a panel of proteins of various origin 

and codon bias. Expression in SixPack (amount of target protein per cell mass or per culture 

volume) was at least as good as in any of the control strains and in fact, was better in most cases 

(in some cases even 20-fold). In general, with the increasing number of rare codons and their 

tandem copies, the advantage of SixPack became increasingly evident. SixPack compared 

especially favorably to control strains when applying AIM, which is a popular medium for 

biotechnological production of proteins in large volumes (i.e., in bioreactors) 
29

. 

 

The aim of this study was to improve the performance of BL21(DE3) for the heterologous 

expression of proteins. We do not claim that other strategies, like codon optimization, cannot 

work better in certain cases, but the simplicity of the use of SixPack is definitely an attractive 

feature. 
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In summary, insertion of the six rare tRNA genes into the genome of BL21(DE3) did not result in 

changes in its basic characteristics like morphology, growth properties, or transformation 

efficiency. The beneficial features (no need for extra plasmid and antibiotics, no need for codon 

optimization, simplicity when expressing gene libraries, high success rate when expressing 

proteins with different codon bias) render SixPack a useful, and likely superior, alternative host 

for expression of heterologous proteins. 

 

Materials and Methods 

 

Medium 

In all experiments involving bacterial culture growth, standard LB or AIM (auto-induction 

medium; LB broth base including trace elements; Formedium LTD, England) were used. 

Antibiotics were used in the following concentrations: 100 µg/ml ampicillin (Ap) and 24 µg/ml 

chloramphenicol (Cam). 

 

E. coli strains 

BL21(DE3) was used as the parental strain. It expresses T7 RNA polymerase from the λDE3 

lysogen inserted into the genome under the regulation of the lacUV5 promoter. This polymerase 

can drive the expression of the genes of interest via the T7 promoter 
30

. 

Rosetta2(DE3)pLysS is a derivative of BL21(DE3). In this strain, pLysSRARE2 plasmid encodes 

seven genes of rare tRNAs (argU, argX, argW, glyT, leuW, ileX, and proL, recognizing the 

AGA/AGG, CGG, AGG, GGA, CUA, AUA, and CCC codons, respectively) under the control of 
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 13

their own promoter. pLysSRARE2 also contains chloramphenicol resistance- and lysosyme-

encoding genes 
31

. 

To create the SixPack strain, BL21(DE3) was modified by inserting extra copies of six rare tRNA 

genes (argU, argX, glyT, leuW, ileX, and proL) into its rrnD operon (Figure 1). These tRNAs 

recognize the same rare codons as the tRNAs expressed from the pLysSRARE2 plasmid (AGG is 

recognized by argX and argW in Rosetta2(DE3)pLysS, but only by argX in SixPack). 

Rosetta2(DE3) strain (Merck) supplies the same tRNA genes on pRARE2 plasmid, without 

lysozyme expression. 

 

Genomic construct 

The rare tRNA genes were cloned into pSG76A (replicating by R6K ori) in three pieces. The first 

part (synthesized by Thermo Fisher Scientific GENEART GmbH; Germany) contained the argX, 

glyT, leuW, and proL tRNA genes. The structure of this DNA fragment was based on the 

polycistronic operon of E. coli coding for argX, hisR, leuT, and proM tRNA genes; we replaced 

the hisR, leuT, and proM genes with glyT, leuW, and proL rare tRNA genes, but kept argX and 

the original intergenic regions. The second and third pieces coding for argU and ileX, 

respectively, were directly amplified from the E. coli genome with their own intergenic regions 

(Figures S1 and S2). The plasmid carrying the six tRNA genes was linearized by PCR using 

overhanging primers containing homologous regions (50- or 100-nt) with the target site (unique 

sequence of the 3’ end of rrnD), and transformed into BL21(DE3) in the presence of λRED 

recombinase 
32

. After successful recombination into the genome, the CRISPR-Cas9 system was 

used to introduce a double-strand break in the ampicillin resistance gene on the insert 
33

. The 

cells’ own RecA system repaired the cleavage by homologous recombination using the 47-nt box 
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on the plasmid homologous to the adjacent rrnD sequence downstream from the site of insertion 

(Figures S3 and S13) 
34

. 

 

Expression plasmids 

The coding sequences of different test proteins were cloned into pETDuet-1 (Novagen). A list of 

these genes and the cloning sites is given in Table S3. The GFP-encoding gene was amplified 

from pCA24N (the cloning plasmid of the ASKA collection) 
35

, and subcloned into pETDuet-1. 

GFP gene variants containing runs of rare codons were created by PCR using pETDUET/GFP as 

a template. The coding DNA sequence of asterless (Asl) was subcloned from the GH02902 

Drosophila Gold cDNA clone into pETDuet-1 following standard procedures. Cloning of Flf1 

into pETDuet-1 has been described elsewhere 
36

. dCas9 was cloned from the pdCas9 plasmid # 

46569 from Addgene 
37

. The HumdCas9 gene was amplified from pMLM3705 plasmid # 47754 

from Addgene 
38

. pETDUET/HumdCas9-GFP expresses HumdCas9 and GFP as a fusion protein. 

EFT1, the gene of elongation factor 2, was amplified from genomic DNA of Saccharomyces 

cerevisiae strain EMY 74.7 and was a kind gift from Tamas Feher 
39

. 

The HPV16 L2 gene (subcloned in Addgene plasmid # 72473) was a kind gift from Vilmos 

Tubak. The gene of Pfu DNA polymerase was amplified from Pyrococcus furiosus genomic 

DNA (DSM 3638) which was a kind gift from Vilmos Tubak. BL21(DE3) harbouring an empty 

pETDuet-1 was used as a control. 

 

Quantitative real-time PCR (qRT-PCR) 

RNA was isolated from exponential phase cultures grown in LB, using the E.Z.N.A. Bacterial 

RNA Kit (VWR, USA). To obtain cDNA, 1 µg of RNA was then reverse transcribed using the 

High-Capacity cDNA Reverse Transcription Kit (Thermo Fisher Scientific) in a final volume of 
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10 µl by using 1 pmole of the reverse primers (Table S4). After dilution with 20 µl of water, 1 µl 

of the diluted reaction mixture was used as a template in qRT-PCR with 10 µl of qPCRBIO 

SyGreen Mix (PCR Biosystems) and 1 µl of gene-specific primer mix, according to the following 

protocol: 10 min at 95°C followed by 40 cycles of 95°C for 25 sec, 60°C for 25 sec, and 72°C for 

15 sec. qRT-PCR was performed in a LightCycler® Nano Real-Time PCR System (Roche 

Diagnostics GmbH; Mannheim, Germany). Transcripts of proK, alaU, and gltW genes were used 

as house-keeping tRNA probes. 

 

Measuring and calculating growth parameters 

To measure growth parameters, a Synergy 2 automated microplate reader machine (BioTek, 

USA) was used. Aliquots of 1µl each of BL21(DE3), SixPack, and Rosetta2(DE3)pLysS 

overnight starter cultures were transferred into 100 µl fresh LB or AIM medium in dedicated 96-

well plates. Rosetta2(DE3)pLysS cultures were supplemented with Cam. Absorbance at 600 nm 

was measured every 5 min for 24 h at 37°C with continuous shaking. Growth parameters (length 

of the lag phase, doubling time and OD increment) were calculated by using previously described 

methods 
40

. 

 

Fluorescence measurements 

Starter cultures of BL21(DE3), SixPack, Rosetta2(DE3)pLysS and Rosetta2(DE3) strains 

expressing GFP or GFP variants were grown overnight in LB in a Synergy 2 automated 

microplate reader machine (BioTek, USA). Starter cultures (1 µl each) were re-inoculated into 

100 µl fresh LB or AIM media supplemented with Ap and isopropyl β-D-1-thiogalactopyranoside 

(IPTG) (plus Cam, in the case of Rosetta2(DE3)pLysS and Rosetta2(DE3)). IPTG was used in 
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 16

concentrations optimized for highest induction (0.05 mM for BL21(DE3) and SixPack, 0.1 mM 

for Rosetta2(DE3) and 0.5 mM for Rosetta2(DE3)pLysS). Measurements were made every 5 

min. 

 

Protein expression and whole cell lysate preparation 

Protein expressions in BL21(DE3) and SixPack were induced with 0.05 mM IPTG, and those in 

Rosetta2(DE3)pLysS were induced with 0.5 mM IPTG in 3ml of LB or AIM (supplemented with 

antibiotics) for 10 h. Bacteria were harvested by centrifugation, resuspended in 150 µl/absorption 

unit (at 600 nm) of phosphate-buffered saline, pH 7.4, supplemented with 1 U/ml 

BenzonaseNuclease (Merck) and 2 mM MgCl2, kept on ice for 10 min, mixed with 4x Laemmli 

sample buffer and boiled for 5 min.  

 

SDS-PAGE and Western blotting 

Equal amounts of protein samples were run on 7% or 10% SDS-PAGE gels. Gels were fixed for 

10 min in 10% acetic acid, stained for 15 min with Coomassie Brilliant Blue (0.1% CBB in 50% 

methanol and 10% acetic acid), and differentiated overnight in 7% acetic acid and 10% methanol. 

For immunoblotting, proteins were blotted onto a nitrocellulose membrane (GE Healthcare) and 

probed with anti-His mouse monoclonal (Thermo Fisher Scientific, #MA1-21315; dilution 1:3-

5000), anti-Flfl rat polyclonal 
36

 (dilution 1: 15,000), anti-Asl rabbit polyclonal 
41

 (dilution 1: 

20,000), anti-GroEL rabbit polyclonal 
42

 (dilution 1:5,000) or anti-DnaK1 mouse monoclonal 

(dilution 1:5,000, Stressgen SPA-880) antibodies following standard procedures. Stained gels and 

X-ray films were scanned at 600 dpi resolution for image processing. 
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Figure legends 

 

Figure 1. Schematic picture of rrnD showing the six extra tRNA genes (dark blue) inserted in the 

3’ end region between thrV and rrfF. 

 

Figure 2. Growth curves of SixPack and control strains BL21(DE3) (marked BL) and 

Rosetta2(DE3)pLysS (marked R) in LB (A) and in AIM (B). (Averages of three independent 

experiments.) There is no significant difference between the growth parameters of BL21(DE3) 

and SixPack (two sample t-test) (see also Table S2). 

 

Figure 3. Ratios of the different tRNA species between SixPack and BL21(DE3) in the log phase. 

(Averages of five independent experiments, each comprising three technical repetitions.) 

Statistical analyses were performed on ddCt values (one-sample t-test, against zero); p < 0,05 was 

measured in all cases. 

 

Figure 4. Expression of GFP (A) and modified GFP versions (B-H) in BL21(DE3) (marked BL), 

SixPack, and Rosetta2(DE3)pLysS (marked R) in LB, monitored by fluorescence measurements. 
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(The curves represent the averages of four independent experiments.) Statistical analysis was 

performed on 20 h-time point fluorescence values, the differences between SixPack vs. 

BL21(DE3) were significant in cases B-F (p < 0,05; paired t-test). 

 

Figure 5. Production of eight heterologous proteins (A-H for Asl, dCas9, HumdCas9, 

HumdCas9-GFP fusion, EFT1, Flfl, HPV16 L2, and Pfu, respectively) detected on protein gels 

by Coomassie Brilliant Blue staining and Western blotting. Proteins were extracted from 

BL21(DE3) (marked BL), SixPack and Rosetta2(DE3)pLysS (marked R) after 10 h growth in LB 

or AIM. Asterisks indicate cases where SixPack produced significantly higher amount of test 

proteins compared to BL21(DE3), based on densitometry data of Western blots of three 

independent experiments (p < 0,05; paired t-test). “Empty” indicates BL21(DE3) harboring 

pETDuet-1. 

 

Figure 6. Summary of heterologous protein production of BL21(DE3) (marked BL), SixPack, and 

Rosetta2(DE3)pLysS (marked R) measured in LB and AIM. The “+” and “-“ marks indicate the 

protein production of the strains relative to SixPack: 100-68% (+++), 67-35% (++), 34-2% (+), 

1% or lower (–). Table A is based on the fluorescence values of GFP and GFP variants detected 

20 h after induction. Table B is based on results of Western blots, validated by densitometry. 

Circles label the cases when SixPack performed better than the parental strain BL21(DE3) in a 

statistically significant manner. 
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Figures 

 

Figure 1. 
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Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

0

1

2

3

4

5

argX glyT leuW proL argU ileX

fold change: SixPack vs. BL21(DE3)

Page 25 of 30

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 26

Figure 4. 
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Figure 5. 
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Figure 6. 
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