61 research outputs found

    Optical properties of NaxV2O5

    Full text link
    The optical properties of sodium-deficient NaxV2O5 (0.85 < x <1) single crystals are analyzed in the wide energy range, from 0.012 to 4.5 eV, using ellipsometry, infrared reflectivity, and Raman scattering techniques. The material remains insulating up to the maximal achieved hole concentration of about 15%. In sodium deficient samples the optical absorption peak associated to the fundamental electronic gap develops at about 0.44 eV. It corresponds to the transition between vanadium dxy and the impurity band, which forms in the middle of the pure NaV2O5 gap. Raman spectra measured with incident photon energy larger then 2 eV show strong resonant behavior, due to the presence of the hole-doping activated optical transitions, peaked at 2.8 eV.Comment: 7 pages, 4 fugures, to be published in PR

    Optical properties and electronic structure of Ca-doped alpha'-NaV2O5

    Get PDF
    The dielectric function of alpha'-Na(1-x)Ca(x)V2O5 (0 < x < 20%) was measured for the a and b axes in the photon energy range 0.8-4.5 eV at room temperature. By varying the Ca-concentration we control the relative abundancy of V4+ and V5+. We observe that the intensity of the main optical absorption peak at 1 eV is proportional to the number of V5+ ions. This rules out the interpretation as a V4+ d-d excitation, and it establishes that this is the on-rung bonding-antibonding transition.Comment: 6 pages, ReVTeX, 5 figures in encapsulated postscript forma

    Low temperature ellipsometry of NaV2O5

    Full text link
    The dielectric function of alpha'NaV2O5 was measured with electric field along the a and b axes in the photon energy range 0.8-4.5 eV for temperatures down to 4K. We observe a pronounced decrease of the intensity of the 1 eV peak upon increasing temperature with an activation energy of about 25meV, indicating that a finite fraction of the rungs becomes occupied with two electrons while others are emptied as temperature increases. No appreciable shifts of peaks were found s in the valence state of individual V atoms at the phase transition is very small. A remarkable inflection of this temperature dependence at the phase transition at 34 K indicates that charge ordering is associated with the low temperature phase.Comment: Revisions in style and order of presentation. One new figure. In press in Physical Review B. REVTeX, 4 pages with 4 postscript figure

    Charge kinks as Raman scatterers in quarter-filled ladders

    Get PDF
    Charge kinks are considered as fundamental excitations in quarter-filled charge-ordered ladders. The strength of the coupling of the kinks to the three-dimensional lattice depends on their energy. The integrated intensity of Raman scattering by kink-antikink pairs is proportional to ϕ5\phi ^{5} or ϕ4,\phi ^{4}, where ϕ\phi is the order parameter. The exponent is determined by the system parameters and by the strength of the electron-phonon coupling.Comment: To be published in Phys. Rev.B (june 2001

    Electron Correlation Effects in Resonant Inelastic X-ray Scattering of NaV2O5

    Full text link
    Element- and site-specific resonant inelastic x-ray scattering spectroscopy (RIXS) is employed to investigate electron correlation effects in {NaV2O5\rm NaV_2O_5}. In contrast to single photon techniques, RIXS at the vanadium L3L_3 edge is able to probe ddd-d^* transitions between V d-bands. A sharp energy loss feature is observed at -1.56 eV, which is well reproduced by a model calculation including correlation effects. The calculation identifies the loss feature as excitation between the lower and upper Hubbard bands and permits an accurate determination of the Hubbard interaction term U=3.0±0.2U= 3.0 \pm 0.2 eV.Comment: 15 pages, four figures, accepted to Phys. Rev. Let

    One-dimensional dynamics of the d-electrons in α\alpha'-NaV2_{2}O5_{5}

    Get PDF
    We have studied the electronic properties of the ladder compound α\alpha'-NaV2_{2}O5_{5}, adopting a joint experimental and theoretical approach. The momentum-dependent loss function was measured using electron energy-loss spectroscopy in transmission. The optical conductivity derived from the loss function by a Kramers-Kronig analysis agrees well with our results from LSDA+U band-structure calculations upon application of an antiferromagnetic alignment of the V~3dxyd_{xy} spins along the legs and an on-site Coulomb interaction U of between 2 and 3 eV. The decomposition of the calculated optical conductivity into contributions from transitions between selected energy regions of the DOS reveals the origin of the observed anisotropy of the optical conductivity. In addition, we have investigated the plasmon excitations related to transitions between the vanadium states within an effective 16 site vanadium cluster model. Good agreement between the theoretical and experimental loss function was obtained using the hopping parameters derived from the tight binding fit to the band-structure and moderate Coulomb interactions between the electrons within the ab plane.Comment: 23 pages, 8 figures; submitted to PR

    Proton imaging of an electrostatic field structure formed in laser-produced counter-streaming plasmas

    Get PDF
    We report the measurements of electrostatic field structures associated with an electrostatic shock formed in laser-produced counter-streaming plasmas with proton imaging. The thickness of the electrostatic structure is estimated from proton images with different proton kinetic energies from 4.7 MeV to 10.7 MeV. The width of the transition region is characterized by electron scale length in the laser-produced plasma, suggesting that the field structure is formed due to a collisionless electrostatic shock

    Electronic Properties of \alpha'-NaV_2O_5

    Full text link
    We studied electronic excitations in NaV2O5 by Raman. Three main topics are discussed. The first is related to a broad continuum of excitations found in the 200-1500 cm-1 range and peaked around 680 cm-1. The resonant Raman profile of this excitation, the polarization selection rules and the presence of its overtone in resonance conditions allowed us to conclude that the origin of this feature is magnetic. We proposed that it arises as a result of light coupling to multi-spinon Raman excitations. Within this scenario we also argued for a scenario explaining the puzzling temperature dependence of the magnetic continuum in terms of an increasing role of next nearest neighbor frustration and in the context of a strongly fluctuating low temperature phase. The second topic is related to the observation of a folded S = 1 magnetic mode which displayed very clear selection rules as a function of the magnetic field orientation. We proposed that the coupling of the photon field to this excitation takes place via the antisymmetric, Dzyaloshinskii-Moriya (DM), interaction which, in a simple dimer model, can also explain the observed selection rules: no splitting or shifts for magnetic fields parallel to the DM vector and the observation of two (upward and downward) dispersing branches for fields perpendicular to the DM vector. Thirdly, we discuss the nature of several new resonances seen below T_c and focus on the possibilities that they are either folded phonons or singlet bound states of two triplet excitations. In particular we emphasized the existence of two modes at 66 and 105 cm-1, the first one being degenerate with one of the spin gap modes.Comment: 29 pages, 19 figure
    corecore