68 research outputs found

    Highly-Sensitive Thin Film THz Detector Based on Edge Metal-Semiconductor-Metal Junction

    Get PDF
    Terahertz (THz) detectors have been extensively studied for various applications such as security, wireless communication, and medical imaging. In case of metal-insulator-metal (MIM) tunnel junction THz detector, a small junction area is desirable because the detector response time can be shortened by reducing it. An edge metal-semiconductor-metal (EMSM) junction has been developed with a small junction area controlled precisely by the thicknesses of metal and semiconductor films. The voltage response of the EMSM THz detector shows the clear dependence on the polarization angle of incident THz wave and the responsivity is found to be very high (similar to 2,169 V/W) at 0.4 THz without any antenna and signal amplifier. The EMSM junction structure can be a new and efficient way of fabricating the nonlinear device THz detector with high cut-off frequency relying on extremely small junction area

    Terahertz communications for 5G and beyond

    Get PDF
    A brief discussion about the exclusive properties and applications of terahertz technology is provided in this chapter. The frequency spectrum terahertz (THz) is also discussed. The applications of terahertz in the field of sensors and terahertz for communications are covered. State-of-the-art literature starting from the early to the latest research conducted is provided and analyzed in terms of the performance of terahertz systems. Terahertz, known as Tera waves or T-waves rather than submillimeter wave, has approximately a fraction of a wavelength less than 30 μm. T-wave is heavily used in sensing and imaging applications, and has no ionization hazards and is an excellent candidate frequency band to defeat the multipaths interference problems for pulse communications. The lower quantum energy of T-waves identifies its potential applications toward near-field imaging, telecommunications, spectroscopy, and sensing, including medical diagnoses and security screening. Identification of DNA signatures including complex real-time molecular dynamics through dielectric resonance is a good example of terahertz spectroscopy instruments nowadays. This concluding chapter will not only address the practical applications of terahertz communications, but also identify the research challenges that lie ahead in terms of terahertz antenna desig

    Channel sounding and indoor radio channel characteristics in the W-band

    Get PDF
    This work presents directional radio channel measurements in the W-band using a commercial versatile channel sounder based on a vector network analyzer (VNA), capable of measuring scattering parameters from 75 to 500 GHz with frequency converters. The commercial setup has been modified by increasing the distance for one of the converters using precision coaxial cables and avoiding the use of amplifiers. Firstly, initial distance-dependent single-input single-output (SISO) measurements of indoor radio channels are presented to assess the validity of the setup in the 75 110 GHz frequency band with highly directive horn antennas. Then, single-input multiple-output (SIMO) radio channels were measured at 94 GHz using one directional and one omnidirectional antenna mounted on two positioners. Initial channel characterization is presented comprising root mean square (rms) delay spread, rms angular spread, K-factor, and path loss in an indoor environment at 94 GHz.This work was supported by MINECO, Spain (TEC2013-47360-C3-2-P TEC2013-47360-C3-3-P) and by European FEDER funds.Martínez Inglés, M.; Gaillot, D.; Pascual-García, J.; Molina-García-Pardo, JM.; Rodriguez Rodriguez, JV.; Rubio Arjona, L.; Juan Llacer, L. (2016). Channel sounding and indoor radio channel characteristics in the W-band. EURASIP Journal on Wireless Communications and Networking. 30:1-8. doi:10.1186/s13638-016-0530-7S1830D Zico, Ultra-wideband and 60 GHz communications for biomedical applications. Springer. http://link.springer.com/book/10.1007%2F978-1-4614-8896-5 .L Jofre, J Romeu, S Capdevila, J Abril, E Nova, M Alonso, The “challenging” world of Terahertz radiation and imaging. Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), 2011, pp. 3470–3475M Kawase, “Non-destructive evaluation method of pharmaceutical tablet by terahertz-time-domain spectroscopy: application to sound-alike medicines”, J. Infrared Millimeter Terahertz Waves, 34(9), 566–571KD Anderson, 94 GHz propagation in the evaporation duct. IEEE Trans. Antennas Propag. 38(5), 746–753 (1990)K Aydin, Y-M Lure, Millimeter wave scattering and propagation in rain: a computational study at 94 and 140 GHz for oblate spheroidal and spherical raindrops. IEEE Trans. Geosci. Remote Sens. 29(1), 593–601 (1991)C Gloaguen, An experiment for propagation studies at 94 GHz. Eighth Int. Conf. Antennas Propagation 1, 406–409 (1993)A Kajiwara, “Indoor propagation measurements at 94 GHz,” personal, indoor and mobile radio communications, 1995. Sixth IEEE Int. Symp PIMRC’95. Wireless Merging Inf. Superhighway 3, 1026 (1995)J Helminger, J Detlefsen, H Groll, Propagation properties of an indoor-channel at 94 GHz. Int. Conf. Microw Millimeter Wave Technol.Proc 98, 9–14 (1998)R Piesiewicz, R Geise, M Jacob, J Jemai, T Kurner, “Indoor channel measurements of point-to-point ultra broadband short range links between 75 GHz and 110 GHz”, in International Symposium Antennas and Propagation Society, 2008, pp. 1–4A Brizzi, A Pellegrini, Y Hao, “Experimental characterization of the propagation on the human torso at W band”, in Radio Science Meeting (Joint with AP-S Symposium), USNC-URSI, 2013, p. 39K Haneda, J Järveläinen, A Karttunen, M Kyro, J Putkonen, Indoor short-range radio propagation measurements At 60 and 70 GHz, in EuCAP 2014, The Hague, The Netherlands, 2014, pp. 1–4S Promwong, J Takada, Free space link budget estimation scheme for ultra wideband impulse radio with imperfect antennas. IEICE Electronics Express 1(7), 188–192 (2004)NL Johnson, S Kotz, N Balakrishnan, Continuous univariate distributions, vol. 1 (Wiley-Interscience, Hoboken, 1993)A Richter, Estimation of radio channel parameters: models and algorithms (Dr.-Ing. dissertation, TU Ilmenau, Ilmenau, Germany, 2005

    Fano resonance engineering in mirror-symmetry-broken THz metamaterials

    Get PDF
    We introduce a comprehensive approach to the design of mirror-symmetry broken terahertz (THz) metamaterials and present both the simulation and experimental results which show the desired asymmetric Fano resonances and electromagnetic induced transparency (EIT)-like windows. With a full wave simulation, we find these asymmetry-induced resonance modes possess extremely high quality factors and they broaden with increase of the structure asymmetry. This phenomenon arises from the destructive interference of a super-radiative bright mode and a sub-radiative dark mode which can’t be excited directly. Surface current and electric field distributions are analyzed to explain the emergence of these Fano resonances. An intuitive mechanical coupled oscillator model is derived to explain the unique line-shape of such Fano resonances. Moreover, large resonant frequency tuning (50 GHz) of Fano resonance has been demonstrated by temperature induced phase change in liquid crystals. We believe that the Fano resonance in THz metamaterials may serve as a strong building block for passive or active THz elements with potential applications for future detection and sensing systems and devices.The authors would like to thank the UK Engineering and Physical Sciences Research Council (EPSRC) for the support through the Platform Grant for Liquid Crystal Photonics (EP/F00897X/1). Xuefeng Li would like to acknowledge the support from Cambridge Trust.This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Springer

    Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes

    Get PDF
    BACKGROUND: Data are lacking on the long-term effect on cardiovascular events of adding sitagliptin, a dipeptidyl peptidase 4 inhibitor, to usual care in patients with type 2 diabetes and cardiovascular disease. METHODS: In this randomized, double-blind study, we assigned 14,671 patients to add either sitagliptin or placebo to their existing therapy. Open-label use of antihyperglycemic therapy was encouraged as required, aimed at reaching individually appropriate glycemic targets in all patients. To determine whether sitagliptin was noninferior to placebo, we used a relative risk of 1.3 as the marginal upper boundary. The primary cardiovascular outcome was a composite of cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for unstable angina. RESULTS: During a median follow-up of 3.0 years, there was a small difference in glycated hemoglobin levels (least-squares mean difference for sitagliptin vs. placebo, -0.29 percentage points; 95% confidence interval [CI], -0.32 to -0.27). Overall, the primary outcome occurred in 839 patients in the sitagliptin group (11.4%; 4.06 per 100 person-years) and 851 patients in the placebo group (11.6%; 4.17 per 100 person-years). Sitagliptin was noninferior to placebo for the primary composite cardiovascular outcome (hazard ratio, 0.98; 95% CI, 0.88 to 1.09; P<0.001). Rates of hospitalization for heart failure did not differ between the two groups (hazard ratio, 1.00; 95% CI, 0.83 to 1.20; P = 0.98). There were no significant between-group differences in rates of acute pancreatitis (P = 0.07) or pancreatic cancer (P = 0.32). CONCLUSIONS: Among patients with type 2 diabetes and established cardiovascular disease, adding sitagliptin to usual care did not appear to increase the risk of major adverse cardiovascular events, hospitalization for heart failure, or other adverse events

    Frequency tracking performance using a hyperbolic digital-phase locked loop for ka-band communication in rain fading channels

    No full text
    In this paper we study and present some results on the performances of frequency tracking for Ka-band satellite communications in rain fading channels. The carrier frequency is tracked using a 2nd order hyperbolic phase detector based digital-phase locked loop (D-PLL). The hyperbolic D-PLL has the capability of extending the tracking range compared to the other D-PLL and hence can be designed such that to achieve low phase jitter performance for improved carrier tracking. We present the design and analysis of the D-PLL and show some simulation results on the frequency tracking performance for Kaband rain fading channel. The results are compared with the non-fading noise only case and comparative analyses are made

    Preliminary experimental results on the spectrum sensing performances for UWB-cognitive radios for detecting IEEE 802.11n wi-fi systems

    No full text
    In this paper we present the spectrum sensing performance for detecting the IEEE 802.11n WiFi terminals for Ultra-Wideband (UWB) based Cognitive Radio (CR) systems. The 802.11n WiFi system lies in the 5GHz un-licensed frequency band and is subjected to interferences from the UWB transmissions. The UWB based CR terminals perform secondary communications by opportunistically utilizing the available spectrum when no legacy users such as the 802.11n WiFi systems are present in the environment. Therefore, the CR nodes need to sense the spectrum to detect the presence of any legacy users in the surroundings. Here, we study the commonly known spectrum sensing technique, the energy based method, on experimentally obtained signal data for the IEEE 802.11n WiFi system, and analyze the detection performances for detecting the legacy user. We present the time-frequency measurements obtained from the experimental data, and also compute the probabilities of missed detection and false alarm for detecting the legacy user by performing post analysis on the experimental data. The results can then be used to determine the detection threshold based on the required detection criteria
    corecore