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Abstract. We consider indoors communications networks using modulated LEDs to transmit 

the information packets. A generic indoor channel equalization formulation is proposed 

assuming the existence of both line of sight and diffuse emitters. The proposed approach is of 

relevance to emergent indoors distributed sensing modalities for which various lighting based 

network communications protocols are considered.  

1. Introduction 

With the wide proliferation of RFIDs, smart-phones and other portable communication devices, as 

well as distributed sensing modalities proposed by sensors manufacturers for pervasive sensing in 

medical/healthcare applications (e.g, hospitals), in domestic electronics e.g.  for smart homes as well 

as in environmental sensing e.g. food/agriculture applications within controlled environments 

(greenhouses, plant growth rooms super market shelves etc) it is realised that current radio 

communication links, have limited bandwidth and are unlikely to be able to cope with the large 

datasets generated in the long run. Although terahertz links have been suggested for indoors 

communications [1,2], a simpler solution for setting up multi-hop local indoor communications 

networks is to use the existing lighting infrastructure in a building and modulate indoor lighting 

appropriately to enable non-directed communications in an ad-hoc manner. LEDs are well suited to 

such applications as they are cheap, robust, more efficient from an energy consumption perspective 

and can be very quickly modulated in the time domain to transmit data packets at high data rates. They 

are also rapidly becoming a preferred lighting solution by many architect firms. LED-based indoor 

communications can be conveniently achieved assuming direct line-of-sight or diffuse links.  

Optical wireless systems use simple baseband modulation schemes such as on-off keying (OOK), 

or pulse position modulation (PPM) [3, 4]. Alternatives that are superior from a power efficiency 

perspective include digital pulse-interval modulation (DPIM) [5], dual header pulse-interval 

modulation (DHPIM) [6] and differential pulse-position modulation (DPPM) [7]. Differential 

amplitude pulse-position modulation (DAPPM) is a new hybrid modulation technique that has 

attracted interest recently [8] as it incorporates aspects from both pulse-amplitude modulation (PAM) 

as well as DPPM. Demodulation of the encoded signals is commonly performed using hard-threshold 

decision (HTD), maximum-likelihood sequence detection (MLSD) or zero-forcing decision-feedback 
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equalization (ZF-DFE) modalities assuming intensity demodulation is performed using a direct 

detection technique [8]. 

 Line-of-sight links can assume a simple exponentially decaying channel model whereas diffuse 

links require a ceiling-bounce channel model [9, 10]. In the time domain, the output ( )y t from the 

communications channel is given by:  

 

( ) ( ) ( ) ( )y t Rh t x t n t       (1) 

 

where ( )h t  is the channel impulse response, R is the detector responsivity, ( )n t is white Gaussian noise 

due to the lighting in the room and   denotes the convolution operator. A ceiling-bounce model such 

as the one assumed by Carruthers and Kahn [11] can be used for the channel model: 
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where ( )u t  is the unit step function and a  depends on the room size, and the transmitter and receiver 

position. The parameter 0L  is given from:   
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where L  is the height of the ceiling, r  is the reflectivity of the ceiling above the transmitter and 

receiver and c  is the speed of light. The parameter 2 /a L c  is related to the rms delay spread rmsD  

through the following expression [8]:  
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In the following sections, a generic channel equalization scheme with amplitude, slew rate and power 

constrains is developed for the above channel.  

 

2. Optimization of the input waveform 

The theory of matched filters [12] could be adopted to customize the excitation waveform in order to 

either maximize the efficiency of energy transfer from the transmitter to the receiver and improve the 

signal-to-noise ratio of the data in frequency regions where the channel identification used for the 

equalization process is ill-conditioned. The problem of maximizing the power transfer can be stated as 

follows. Given the Laplace transform H() of ( )h t , find the Laplace transform U() of ( )u t  that 

maximizes the following function: 

 

J = 


0

2|)()(|  dUH     (5) 

 

subject to the following restrictions related to the capabilities of the emitter: 

 

0),(|)(|   MU      (6) 

 

where M() is an upper bound for the spectral profile of the input pulse at each frequency and the 
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restriction on the overall power of the generator is given from: 

 

max
0

2|)(| PdU 


      (7) 

 

where M() is the maximum rms value that the generator is able to deliver at frequency  and Pmax is 

the maximum overall power output of the emitter. This problem can be re-stated by introducing a 

variable Z() = |U()|
2
 so that the objective function becomes: 
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subject to: 
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Under the hypothesis that H is known, Eq. (8) is a linear functional of Z(), which must be 

minimized subject to the linear constraints expressed in (9a) and (9b). This optimization problem 

could be solved by using variational calculus techniques. Alternatively, by discretizing the frequency 

axis and considering discrete frequencies up to a certain maximum max, the problem becomes a finite-

dimensional Linear Program, which can be solved in an efficient manner by techniques such as the 

Simplex method. 

A different problem would be to shape the pulse in order to obtain a specified pulse shape at the 

output of the receiver. This problem can be formulated as follows. Let Yd() be the frequency profile 

of the desired output pulse. Given H(), find U() that minimizes the following function:  

 





0

2|)()()(|'  dUHYJ d     (10) 

 

subject to the generator restrictions: 

 

0),(|)(|   MU      (11a) 

 

max
0
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

      (11b) 

 

This problem is more complex than the previous one, because the cost function 'J  cannot be 

transformed in a linear function by a change of variables, as it was done previously. In this case, the 

problem must be solved by numerical nonlinear programming techniques. The formulation can be 

regarded as a pre-equalization process. In fact, instead of transmitting the desired pulse shape, a 

different pulse shape is realized in order to account for the distortion caused by the transmission 

through the devices and channel under consideration. It is worth noticing that, if no restrictions are 

placed on the generator capabilities, then the solution to this problem is: 
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which may not be a feasible solution in practice. 

A different approach consists of formulating the pre-equalization as an optimal control problem in 

the time domain. Assuming that yd[k] is the desired pulse shape at the output of the device under 

consideration, the cost function can be written as: 

 



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K
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d kykyJ
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2])[][('      (13) 

 

subject to the dynamics of the device: 
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and also the time-domain restrictions of the generator: 

 

Kkukuu ,...,1,0,)( maxmax               (amplitude)  (15a) 

 

Kkukuu ,...,1,0,)( maxmax        (slew rate)  (15b) 
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0
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K

k
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                                         (power)  (15c)  

 

where u[k] = u[k] – u[k 1]. Equations (13), (14), (15a), (15b) and (15c) define a linear-quadratic 

control problem with input constraints. This problem can be solved numerically. Moreover, if the 

power restriction (15c) is found to be of small importance and is eliminated from the optimization 

problem, then efficient quadratic programming methods can be used to find the solution, because the 

remaining input restrictions (15a and 15b) are both linear. An alternative consists of transforming the 

hard input constraints into soft input constraints by adding input-related terms to the cost function 

(13): 
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where  and  are design weights. An exact solution to this problem can be obtained by the use of a 

Ricatti equation. If it is found to violate the input restrictions, then weight orcan be increased in 

order to force a reduction in the input amplitude and rate of change respectively. This process can be 

iterated until a satisfactory solution is found. Examples from the application of the above formulation 

to indoors DAPPM encoded communications channels will be discussed at the conference.  
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