166 research outputs found

    Capsular polysaccharides of cultured phototrophic biofilms

    Get PDF
    Phototrophic biofilm samples from an Italian wastewater treatment plant were studied in microcosm experiments under varying irradiances, temperatures and flow regimes to assess the effects of environmental variables and phototrophic biomass on capsular exopolysaccharides (CPS). The results, obtained from circular dichroism spectroscopy and High Performance Liquid Chromatography, suggest that CPS have a stable spatial conformation and a complex monosaccharide composition. The total amount present was positively correlated with the biomass of cyanobacteria and diatoms, and negatively with the biovolume of green algae. The proportion of uronic acids showed the same correlation with these taxon groups, indicating a potential role of cyanobacteria and diatoms in the removal of residual nutrients and noxious cations in wastewater treatment. While overall biofilm growth was limited by low irradiance, high temperature (30 degrees C) and low flow velocity (25 l h(-1)) yielded the highest phototrophic biomass, the largest amount of CPS produced, and the highest proportion of carboxylic acids present

    BV Estimates in Optimal Transportation and Applications

    Get PDF
    In this paper we study the BV regularity for solutions of certain variational problems in Optimal Transportation. We prove that the Wasserstein projection of a measure with BV density on the set of measures with density bounded by a given BV function f is of bounded variation as well and we also provide a precise estimate of its BV norm. Of particular interest is the case f = 1, corresponding to a projection onto a set of densities with an L∞ bound, where we prove that the total variation decreases by projection. This estimate and, in particular, its iterations have a natural application to some evolutionary PDEs as, for example, the ones describing a crowd motion. In fact, as an application of our results, we obtain BV estimates for solutions of some non-linear parabolic PDE by means of optimal transportation techniques. We also establish some properties of the Wasserstein projection which are interesting in their own right, and allow, for instance, for the proof of the uniqueness of such a projection in a very general framework

    Differential proteomes of the cyanobacterium Cyanothece sp. CCY 0110 upon exposure to heavy metals

    Get PDF
    The proteomes of the highly efficient extracellular polymeric substances (EPS)-producer cyanobacterium Cyanothece sp. CCY 0110, grown in medium supplemented with an essential metal (Cu(2+)) or a non-essential metal (Cd(2+)),were compared using iTRAQ technology. The data were obtained within a larger study that evaluated the overall effects of different heavy metals on growth/survival, EPS production and ultrastructure of this cyanobacterium [1]. To allow a broader understanding of the strategies triggered to coupe with toxic effects of the metals, Cyanothece's proteomes were evaluated after chronic and acute exposure to Cu(2+) and Cd(2+) in two independent 8-plex iTRAQ studies. For the chronic exposure 0.1 mg/l of Cu(2+) or 5 mg/l of Cd(2+) were used for 10 and 20 days, while in the acute experiments the cells were exposed to 10× these concentrations for 24 h. 202 and 268 proteins were identified and quantified for studies 1 (Cu(2+)) and 2 (Cd(2+)), respectively. The majority of the proteins with significant fold changes were associated with photosynthesis, CO2 fixation and carbohydrate metabolism, translation, and nitrogen and amino acid metabolism

    The alternative sigma factor SigF is a key player in the control of secretion mechanisms in Synechocystis sp. PCC 6803.

    Get PDF
    Cyanobacterial alternative sigma factors are crucial players in environmental adaptation processes, which may involve bacterial responses related to maintenance of cell envelope and control of secretion pathways. Here, we show that the Group 3 alternative sigma factor F (SigF) plays a pleiotropic role in Synechocystis sp. PCC 6803 physiology, with a major impact on growth and secretion mechanisms, such as the production of extracellular polysaccharides, vesiculation and protein secretion. Although ΔsigF growth was significantly impaired, the production of released polysaccharides (RPS) increased 3 to 4-fold compared to the wild-type. ΔsigF exhibits also impairment in formation of outer-membrane vesicles (OMVs) and pili, as well as several other cell envelope alterations. Similarly, the exoproteome composition of ΔsigF differs from the wild-type both in amount and type of proteins identified. Quantitative proteomics (iTRAQ) and an in silico analysis of SigF binding motifs revealed possible targets/pathways under SigF control. Besides changes in protein levels involved in secretion mechanisms, our results indicated that photosynthesis, central carbon metabolism, and protein folding/degradation mechanisms are altered in ΔsigF. Overall, this work provided new evidences about the role of SigF on Synechocystis physiology and associates this regulatory element with classical and non-classical secretion pathways

    Metagenomic and Metabolic Profiling of Nonlithifying and Lithifying Stromatolitic Mats of Highborne Cay, The Bahamas

    Get PDF
    BACKGROUND: Stromatolites are laminated carbonate build-ups formed by the metabolic activity of microbial mats and represent one of the oldest known ecosystems on Earth. In this study, we examined a living stromatolite located within the Exuma Sound, The Bahamas and profiled the metagenome and metabolic potential underlying these complex microbial communities. METHODOLOGY/PRINCIPAL FINDINGS: The metagenomes of the two dominant stromatolitic mat types, a nonlithifying (Type 1) and lithifying (Type 3) microbial mat, were partially sequenced and compared. This deep-sequencing approach was complemented by profiling the substrate utilization patterns of the mats using metabolic microarrays. Taxonomic assessment of the protein-encoding genes confirmed previous SSU rRNA analyses that bacteria dominate the metagenome of both mat types. Eukaryotes comprised less than 13% of the metagenomes and were rich in sequences associated with nematodes and heterotrophic protists. Comparative genomic analyses of the functional genes revealed extensive similarities in most of the subsystems between the nonlithifying and lithifying mat types. The one exception was an increase in the relative abundance of certain genes associated with carbohydrate metabolism in the lithifying Type 3 mats. Specifically, genes associated with the degradation of carbohydrates commonly found in exopolymeric substances, such as hexoses, deoxy- and acidic sugars were found. The genetic differences in carbohydrate metabolisms between the two mat types were confirmed using metabolic microarrays. Lithifying mats had a significant increase in diversity and utilization of carbon, nitrogen, phosphorus and sulfur substrates. CONCLUSION/SIGNIFICANCE: The two stromatolitic mat types retained similar microbial communities, functional diversity and many genetic components within their metagenomes. However, there were major differences detected in the activity and genetic pathways of organic carbon utilization. These differences provide a strong link between the metagenome and the physiology of the mats, as well as new insights into the biological processes associated with carbonate precipitation in modern marine stromatolites

    Influence of metals and metalloids on the composition and fluorescence quenching of the extracellular polymeric substances produced by the polymorphic fungus <i>Aureobasidium pullulans</i>

    Get PDF
    Aureobasidium pullulansis a ubiquitous and widely distributed fungus in the environment, and exhibits substantial tolerance against toxic metals. However, the interactions between metals and metalloids with the copious extracellular polymeric substances (EPS) produced byA. pullulansand possible relationships to tolerance are not well understood. In this study, it was found that mercury (Hg) and selenium (Se), as selenite, not only significantly inhibited growth ofA. pullulansbut also affected the composition of produced EPS. Lead (Pb) showed little influence on EPS yield or composition. The interactions of EPS fromA. pullulanswith the tested metals and metalloids depended on the specific element and their concentration. Fluorescence intensity measurements of the EPS showed that the presence of metal(loid)s stimulated the production of extracellular tryptophan-like and aromatic protein-like substances. Examination of fluorescence quenching and calculation of binding constants revealed that the fluorescence quenching process for Hg; arsenic (As), as arsenite; and Pb to EPS were mainly governed by static quenching which resulted in the formation of a stable non-fluorescent complexes between the EPS and metal(loid)s. Se showed no significant interaction with the EPS according to fluorescence quenching. These results provide further understanding of the interactions between metals and metalloids and EPS produced by fungi and their contribution to metal(loid) tolerance

    The Academic and Labor Market Returns of University Professors

    Full text link

    Metabolismo microbico

    No full text
    Il termine metabolismo definisce l\u2019insieme delle reazioni chimiche che si svolgono a livello cellulare e che sono necessarie alla vita dei microrganismi. Il metabolismo pu\uf2 essere considerato suddiviso in due fasi, tra loro strettamente interdipendenti: il catabolismo, comprendente le reazioni chimiche che portano alla produzione di energia, e l\u2019anabolismo, comprendente le reazioni endoergoniche che portano alla sintesi delle macromolecole complesse a partire da composti semplici (precursori metabolici). Se l\u2019anabolismo \ue8 per molti aspetti abbastanza simile nei procarioti e negli eucarioti, il catabolismo nei batteri presenta una variet\ue0 di meccanismi implicati nella conservazione dell\u2019energia, che li rende paragonabili a \u201ccatalizzatori biologici\u201d, capaci di innumerevoli reazioni e trasformazioni. Questo aspetto della vita microbica rende i procarioti responsabili dei cicli biologici dei principali elementi, che condizionano la vita sulla terra
    • …
    corecore