900 research outputs found
Self-consistent nonlinear kinetic simulations of the anomalous Doppler instability of suprathermal electrons in plasmas
Suprathermal tails in the distributions of electron velocities parallel to the magnetic field are found in many areas of plasma physics, from magnetic confinement fusion to solar system plasmas. Parallel electron kinetic energy can be transferred into plasma waves and perpendicular gyration energy of particles through the anomalous Doppler instability (ADI), provided that energetic electrons with parallel velocities v ≥ (ω + Ωce )/k are present; here Ωce denotes electron cyclotron frequency, ω the wave angular frequency and k the component of wavenumber parallel to the magnetic field. This phenomenon is widely observed in tokamak plasmas. Here we present the first fully self-consistent relativistic particle-in-cell simulations of the ADI, spanning the linear and nonlinear regimes of the ADI. We test the robustness of the analytical theory in the linear regime and follow the ADI through to the steady state. By directly evaluating the parallel and perpendicular dynamical contributions to j · E in the simulations, we follow the energy transfer between
the excited waves and the bulk and tail electron populations for the first time. We find that the ratio Ωce /(ωpe + Ωce ) of energy transfer between parallel and perpendicular, obtained from linear analysis, does not apply when damping is fully included, when we find it to be ωpe /(ωpe + Ωce ); here ωpe denotes the electron plasma frequency. We also find that the ADI can arise beyond the previously expected range of plasma parameters, in particular when Ωce > ωpe . The simulations also exhibit a spectral feature which may
correspond to observations of suprathermal narrowband emission at ωpe detected from low density tokamak plasmas
Neoclassical transport of tungsten ion bundles in total-f neoclassical gyrokinetic simulations of a whole-volume JET-like plasma
Neoclassical gyrokinetic simulations including tungsten impurities are
carried out using multiple gyrokinetic bundles to model the many charge states
of tungsten ions present in the whole-volume of a model H-mode plasma in JET
geometry. A gyrokinetic bundle regroups tungsten ions of similar charge
together in order to decrease the computational cost. The initial radial shape
of the bundles and their individual charges are deduced from a coronal
approximation and from quasi-neutrality of the plasma. Low-Z tungsten ions move
radially inward from SOL into the core region, whereas high-Z tungsten ions
move radially outwardly from the core and inwardly from the separatrix. These
fluxes lead to an accumulation of tungsten in the pedestal top of our test
case. This organization of the fluxes cannot be captured by a single
tungsten-ion simulation. Large up/down poloidal asymmetries of tungsten form in
the pedestal and strongly influence the direction of these neoclassical fluxes.
Future implementation of atomic interactions between bundles is discussed.Comment: 11 pages, 11 figure
Gyrokinetic analysis and simulation of pedestals, to identify the culprits for energy losses using fingerprints
Fusion performance in tokamaks hinges critically on the efficacy of the Edge
Transport Barrier (ETB) at suppressing energy losses. The new concept of
fingerprints is introduced to identify the instabilities that cause the
transport losses in the ETB of many of today's experiments, from widely posited
candidates. Analysis of the Gyrokinetic-Maxwell equations, and gyrokinetic
simulations of experiments, find that each mode type produces characteristic
ratios of transport in the various channels: density, heat and impurities.
This, together with experimental observations of transport in some channel, or,
of the relative size of the driving sources of channels, can identify or
determine the dominant modes causing energy transport. In multiple ELMy H-mode
cases that are examined, these fingerprints indicate that MHD-like modes are
apparently not the dominant agent of energy transport; rather, this role is
played by Micro-Tearing Modes (MTM) and Electron Temperature Gradient (ETG)
modes, and in addition, possibly Ion Temperature Gradient (ITG)/Trapped
Electron Modes (ITG/TEM) on JET. MHD-like modes may dominate the electron
particle losses. Fluctuation frequency can also be an important means of
identification, and is often closely related to the transport fingerprint. The
analytical arguments unify and explain previously disparate experimental
observations on multiple devices, including DIII-D, JET and ASDEX-U, and
detailed simulations of two DIII-D ETBs also demonstrate and corroborate this
Self-consistent simulation of plasma scenarios for ITER using a combination of 1.5D transport codes and free-boundary equilibrium codes
Self-consistent transport simulation of ITER scenarios is a very important
tool for the exploration of the operational space and for scenario
optimisation. It also provides an assessment of the compatibility of developed
scenarios (which include fast transient events) with machine constraints, in
particular with the poloidal field (PF) coil system, heating and current drive
(H&CD), fuelling and particle and energy exhaust systems. This paper discusses
results of predictive modelling of all reference ITER scenarios and variants
using two suite of linked transport and equilibrium codes. The first suite
consisting of the 1.5D core/2D SOL code JINTRAC [1] and the free boundary
equilibrium evolution code CREATE-NL [2,3], was mainly used to simulate the
inductive D-T reference Scenario-2 with fusion gain Q=10 and its variants in H,
D and He (including ITER scenarios with reduced current and toroidal field).
The second suite of codes was used mainly for the modelling of hybrid and
steady state ITER scenarios. It combines the 1.5D core transport code CRONOS
[4] and the free boundary equilibrium evolution code DINA-CH [5].Comment: 23 pages, 18 figure
Effect of toroidal field ripple on plasma rotation in JET
Dedicated experiments on TF ripple effects on the performance of tokamak plasmas have been carried out at JET. The TF ripple was found to have a profound effect on the plasma rotation. The central Mach number, M, defined as the ratio of the rotation velocity and the thermal velocity, was found to drop as a function of TF ripple amplitude (3) from an average value of M = 0.40-0.55 for operations at the standard JET ripple of 6 = 0.08% to M = 0.25-0.40 for 6 = 0.5% and M = 0.1-0.3 for delta = 1%. TF ripple effects should be considered when estimating the plasma rotation in ITER. With standard co-current injection of neutral beam injection (NBI), plasmas were found to rotate in the co-current direction. However, for higher TF ripple amplitudes (delta similar to 1%) an area of counter rotation developed at the edge of the plasma, while the core kept its co-rotation. The edge counter rotation was found to depend, besides on the TF ripple amplitude, on the edge temperature. The observed reduction of toroidal plasma rotation with increasing TF ripple could partly be explained by TF ripple induced losses of energetic ions, injected by NBI. However, the calculated torque due to these losses was insufficient to explain the observed counter rotation and its scaling with edge parameters. It is suggested that additional TF ripple induced losses of thermal ions contribute to this effect
Transient heat transport studies in JET conventional and advanced tokamak plasmas
Transient transport studies have long been recognised as a valuable complement to steady-state analysis for the understanding of transport mechanisms. Recently, transient transport data have proved to be a powerful tool to test the validity of physics-based transport models. In this paper, results from transient heat transport experiments in JET and their modelling will be presented. Edge cold pulses and modulation of ICRH (in Mode Conversion scheme) and NBI power have been used to provide detectable electron (Te) and ion (Ti) temperature perturbations. The experiments have been performed either in conventional plasma regimes or in Advanced Tokamak regimes, in the presence of an Internal Transport Barrier (ITB). In conventional plasmas issues such as stiffness, influence of Te/Ti, non-locality have been addressed. In ITB plasmas, insight into the physics of ITBs and the ITB formation mechanisms has been gained. The use of edge perturbations for ITB triggering has been explored. Modelling of the experimental results has been performed using both empirical models and physics-based models. Results of cold pulse experiments in ITBs have also been compared with turbulence simulations
- …