589 research outputs found

    Protein components of a cytochrome P-450 linalool 8-methyl hydroxylase

    Get PDF
    The cytochrome P-450 heme-thiolate monooxygenases that hydroxylate monoterpene hydrocarbon groups are effective models for the cytochrome P-450 family. We have purified and characterized the three proteins from a P-450-dependent linalool 8-methyl hydroxylase in Pseudomonas putida (incognita) strain PpG777. The proteins resemble the camphor 5-exohydroxylase components in chemical and physical properties; however, they show neither immunological cross-reactivity nor catalytic activity in heterogenous recombination. These two systems provide an excellent model to probe more deeply the heme-thiolate reaction center, molecular domains of substrate specificity, redox-pair interactions, and the regulation of the reaction cycle

    Identification of the Major Expressed S-Layer and Cell Surface-Layer-Related Proteins in the Model Methanogenic Archaea: Methanosarcina barkeri Fusaro and Methanosarcina acetivorans C2A

    Get PDF
    Many archaeal cell envelopes contain a protein coat or sheath composed of one or more surface exposed proteins. These surface layer (S-layer) proteins contribute structural integrity and protect the lipid membrane from environmental challenges. To explore the species diversity of these layers in the Methanosarcinaceae, the major S-layer protein in Methanosarcina barkeri strain Fusaro was identified using proteomics. The Mbar_A1758 gene product was present in multiple forms with apparent sizes of 130, 120, and 100 kDa, consistent with post-translational modifications including signal peptide excision and protein glycosylation. A protein with features related to the surface layer proteins found in Methanosarcina acetivorans C2A and Methanosarcina mazei Goel was identified in the M. barkeri genome. These data reveal a distinct conserved protein signature with features and implied cell surface architecture in the Methanosarcinaceae that is absent in other archaea. Paralogous gene expression patterns in two Methanosarcina species revealed abundant expression of a single S-layer paralog in each strain. Respective promoter elements were identified and shown to be conserved in mRNA coding and upstream untranslated regions. Prior M. acetivorans genome annotations assigned S-layer or surface layer associated roles of eighty genes: however, of 68 examined none was significantly expressed relative to the experimentally determined S-layer gene

    Structural conservation of chemotaxis machinery across Archaea and Bacteria

    Get PDF
    Chemotaxis allows cells to sense and respond to their environment. In Bacteria, stimuli are detected by arrays of chemoreceptors that relay the signal to a two-component regulatory system. These arrays take the form of highly stereotyped super-lattices comprising hexagonally packed trimers-of-receptor-dimers networked by rings of histidine kinase and coupling proteins. This structure is conserved across chemotactic Bacteria, and between membrane-bound and cytoplasmic arrays, and gives rise to the highly cooperative, dynamic nature of the signalling system. The chemotaxis system, absent in eukaryotes, is also found in Archaea, where its structural details remain uncharacterized. Here we provide evidence that the chemotaxis machinery was not present in the last archaeal common ancestor, but rather was introduced in one of the waves of lateral gene transfer that occurred after the branching of Eukaryota but before the diversification of Euryarchaeota. Unlike in Bacteria, the chemotaxis system then evolved largely vertically in Archaea, with very few subsequent successful lateral gene transfer events. By electron cryotomography, we find that the structure of both membrane-bound and cytoplasmic chemoreceptor arrays is conserved between Bacteria and Archaea, suggesting the fundamental importance of this signalling architecture across diverse prokaryotic lifestyles

    Proteomic analysis reveals metabolic and regulatory systems involved in the syntrophic and axenic lifestyle of Syntrophomonas wolfei

    Get PDF
    Microbial syntrophy is a vital metabolic interaction necessary for the complete oxidation of organic biomass to methane in all-anaerobic ecosystems. However, this process is thermodynamically constrained and represents an ecosystem-level metabolic bottleneck. To gain insight into the physiology of this process, a shotgun proteomics approach was used to quantify the protein landscape of the model syntrophic metabolizer, Syntrophomonas wolfei, grown axenically and syntrophically with Methanospirillum hungatei. Remarkably, the abundance of most proteins as represented by normalized spectral abundance factor (NSAF) value changed very little between the pure and coculture growth conditions. Among the most abundant proteins detected were GroEL and GroES chaperonins, a small heat shock protein, and proteins involved in electron transfer, beta-oxidation, and ATP synthesis. Several putative energy conservation enzyme systems that utilize NADH and ferredoxin were present. The abundance of an EtfAB2 and the membrane-bound iron-sulfur oxidoreductase (Swol_0698 gene product) delineated a potential conduit for electron transfer between acyl-CoA dehydrogenases and membrane redox carriers. Proteins detected only when S. wolfei was grown with M. hungatei included a zinc-dependent dehydrogenase with a GroES domain, whose gene is present in genomes in many organisms capable of syntrophy, and transcriptional regulators responsive to environmental stimuli or the physiological status of the cell. The proteomic analysis revealed an emphasis on macromolecular stability and energy metabolism by S. wolfei and presence of regulatory mechanisms responsive to external stimuli and cellular physiological status

    Complete genome sequence of Syntrophobacter fumaroxidans strain (MPOB(T)).

    Get PDF
    Syntrophobacter fumaroxidans strain MPOB(T) is the best-studied species of the genus Syntrophobacter. The species is of interest because of its anaerobic syntrophic lifestyle, its involvement in the conversion of propionate to acetate, H2 and CO2 during the overall degradation of organic matter, and its release of products that serve as substrates for other microorganisms. The strain is able to ferment fumarate in pure culture to CO2 and succinate, and is also able to grow as a sulfate reducer with propionate as an electron donor. This is the first complete genome sequence of a member of the genus Syntrophobacter and a member genus in the family Syntrophobacteraceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 4,990,251 bp long genome with its 4,098 protein-coding and 81 RNA genes is a part of the Microbial Genome Program (MGP) and the Genomes to Life (GTL) Program project

    Pyrophosphate-Dependent ATP Formation from Acetyl Coenzyme A in Syntrophus aciditrophicus, a New Twist on ATP Formation.

    Get PDF
    UnlabelledSyntrophus aciditrophicus is a model syntrophic bacterium that degrades key intermediates in anaerobic decomposition, such as benzoate, cyclohexane-1-carboxylate, and certain fatty acids, to acetate when grown with hydrogen-/formate-consuming microorganisms. ATP formation coupled to acetate production is the main source for energy conservation by S. aciditrophicus However, the absence of homologs for phosphate acetyltransferase and acetate kinase in the genome of S. aciditrophicus leaves it unclear as to how ATP is formed, as most fermentative bacteria rely on these two enzymes to synthesize ATP from acetyl coenzyme A (CoA) and phosphate. Here, we combine transcriptomic, proteomic, metabolite, and enzymatic approaches to show that S. aciditrophicus uses AMP-forming, acetyl-CoA synthetase (Acs1) for ATP synthesis from acetyl-CoA. acs1 mRNA and Acs1 were abundant in transcriptomes and proteomes, respectively, of S. aciditrophicus grown in pure culture and coculture. Cell extracts of S. aciditrophicus had low or undetectable acetate kinase and phosphate acetyltransferase activities but had high acetyl-CoA synthetase activity under all growth conditions tested. Both Acs1 purified from S. aciditrophicus and recombinantly produced Acs1 catalyzed ATP and acetate formation from acetyl-CoA, AMP, and pyrophosphate. High pyrophosphate levels and a high AMP-to-ATP ratio (5.9 ± 1.4) in S. aciditrophicus cells support the operation of Acs1 in the acetate-forming direction. Thus, S. aciditrophicus has a unique approach to conserve energy involving pyrophosphate, AMP, acetyl-CoA, and an AMP-forming, acetyl-CoA synthetase.ImportanceBacteria use two enzymes, phosphate acetyltransferase and acetate kinase, to make ATP from acetyl-CoA, while acetate-forming archaea use a single enzyme, an ADP-forming, acetyl-CoA synthetase, to synthesize ATP and acetate from acetyl-CoA. Syntrophus aciditrophicus apparently relies on a different approach to conserve energy during acetyl-CoA metabolism, as its genome does not have homologs to the genes for phosphate acetyltransferase and acetate kinase. Here, we show that S. aciditrophicus uses an alternative approach, an AMP-forming, acetyl-CoA synthetase, to make ATP from acetyl-CoA. AMP-forming, acetyl-CoA synthetases were previously thought to function only in the activation of acetate to acetyl-CoA

    Boolean network model predicts cell cycle sequence of fission yeast

    Get PDF
    A Boolean network model of the cell-cycle regulatory network of fission yeast (Schizosaccharomyces Pombe) is constructed solely on the basis of the known biochemical interaction topology. Simulating the model in the computer, faithfully reproduces the known sequence of regulatory activity patterns along the cell cycle of the living cell. Contrary to existing differential equation models, no parameters enter the model except the structure of the regulatory circuitry. The dynamical properties of the model indicate that the biological dynamical sequence is robustly implemented in the regulatory network, with the biological stationary state G1 corresponding to the dominant attractor in state space, and with the biological regulatory sequence being a strongly attractive trajectory. Comparing the fission yeast cell-cycle model to a similar model of the corresponding network in S. cerevisiae, a remarkable difference in circuitry, as well as dynamics is observed. While the latter operates in a strongly damped mode, driven by external excitation, the S. pombe network represents an auto-excited system with external damping.Comment: 10 pages, 3 figure

    A human MAP kinase interactome.

    Get PDF
    Mitogen-activated protein kinase (MAPK) pathways form the backbone of signal transduction in the mammalian cell. Here we applied a systematic experimental and computational approach to map 2,269 interactions between human MAPK-related proteins and other cellular machinery and to assemble these data into functional modules. Multiple lines of evidence including conservation with yeast supported a core network of 641 interactions. Using small interfering RNA knockdowns, we observed that approximately one-third of MAPK-interacting proteins modulated MAPK-mediated signaling. We uncovered the Na-H exchanger NHE1 as a potential MAPK scaffold, found links between HSP90 chaperones and MAPK pathways and identified MUC12 as the human analog to the yeast signaling mucin Msb2. This study makes available a large resource of MAPK interactions and clone libraries, and it illustrates a methodology for probing signaling networks based on functional refinement of experimentally derived protein-interaction maps

    Tissue- and sex-specific small RNAomes reveal sex differences in response to the environment.

    Get PDF
    RNA interference (RNAi) related pathways are essential for germline development and fertility in metazoa and can contribute to inter- and trans-generational inheritance. In the nematode Caenorhabditis elegans, environmental double-stranded RNA provided by feeding can lead to heritable changes in phenotype and gene expression. Notably, transmission efficiency differs between the male and female germline, yet the underlying mechanisms remain elusive. Here we use high-throughput sequencing of dissected gonads to quantify sex-specific endogenous piRNAs, miRNAs and siRNAs in the C. elegans germline and the somatic gonad. We identify genes with exceptionally high levels of secondary 22G RNAs that are associated with low mRNA expression, a signature compatible with silencing. We further demonstrate that contrary to the hermaphrodite germline, the male germline, but not male soma, is resistant to environmental RNAi triggers provided by feeding, in line with previous work. This sex-difference in silencing efficacy is associated with lower levels of gonadal RNAi amplification products. Moreover, this tissue- and sex-specific RNAi resistance is regulated by the germline, since mutant males with a feminized germline are RNAi sensitive. This study provides important sex- and tissue-specific expression data of miRNA, piRNA and siRNA as well as mechanistic insights into sex-differences of gene regulation in response to environmental cues
    corecore