17,370 research outputs found

    Finite momentum condensation in a pumped microcavity

    Full text link
    We calculate the absorption spectra of a semiconductor microcavity into which a non-equilibrium exciton population has been pumped. We predict strong peaks in the spectrum corresponding to collective modes analogous to the Cooper modes in superconductors and fermionic atomic gases. These modes can become unstable, leading to the formation of off-equilibrium quantum condensates. We calculate a phase diagram for condensation, and show that the dominant instabilities can be at a finite momentum. Thus we predict the formation of inhomogeneous condensates, similar to Fulde-Ferrel-Larkin-Ovchinnikov states.Comment: 7 pages, 4 figures, updated to accepted versio

    Role of triaxiality in the ground state shape of neutron rich Yb, Hf, W, Os, and Pt isotopes

    Get PDF
    The evolution of the ground-state shape along the triaxial landscape of several isotopes of Yb, Hf, W, Os, and Pt is analyzed using the self-consistent Hartree-Fock-Bogoliubov approximation. Two well reputed interactions (Gogny D1S and Skyrme SLy4) have been used in the study in order to asses to which extent the results are independent of the details of the effective interaction. A large number of even-even nuclei, with neutron numbers from N=110 up to N=122 has been considered, covering in this way a vast extension of the nuclear landscape where signatures of oblate-prolate shape transitions have already manifested both theoretically and experimentally.Comment: 21 pages, 8 figure

    Overcomplete steerable pyramid filters and rotation invariance

    Get PDF
    A given (overcomplete) discrete oriented pyramid may be converted into a steerable pyramid by interpolation. We present a technique for deriving the optimal interpolation functions (otherwise called 'steering coefficients'). The proposed scheme is demonstrated on a computationally efficient oriented pyramid, which is a variation on the Burt and Adelson (1983) pyramid. We apply the generated steerable pyramid to orientation-invariant texture analysis in order to demonstrate its excellent rotational isotropy. High classification rates and precise rotation identification are demonstrated

    Monitoring spatially heterogeneous dynamics in a drying colloidal thin film

    Get PDF
    We report on a new type of experiment that enables us to monitor spatially and temporally heterogeneous dynamic properties in complex fluids. Our approach is based on the analysis of near-field speckles produced by light diffusely reflected from the superficial volume of a strongly scattering medium. By periodic modulation of an incident speckle beam we obtain pixel-wise ensemble averages of the structure function coefficient, a measure of the dynamic activity. To illustrate the application of our approach we follow the different stages in the drying process of a colloidal thin film. We show that we can access ensemble averaged dynamic properties on length scales as small as ten micrometers over the full field of view.Comment: To appear in Soft Material

    Purely transmitting integrable defects

    Get PDF
    Some aspects of integrable field theories possessing purely transmitting defects are described. The main example is the sine-Gordon model and several striking features of a classical field theory containing one or more defects are pointed out. Similar features appearing in the associated quantum field theory are also reviewed briefly.Comment: 6 pages, to appear in Proceedings of the XVth International Colloquium on Integrable Systems and Quantum Symmetries, Prague, June 200

    Efficient Quantum Tensor Product Expanders and k-designs

    Full text link
    Quantum expanders are a quantum analogue of expanders, and k-tensor product expanders are a generalisation to graphs that randomise k correlated walkers. Here we give an efficient construction of constant-degree, constant-gap quantum k-tensor product expanders. The key ingredients are an efficient classical tensor product expander and the quantum Fourier transform. Our construction works whenever k=O(n/log n), where n is the number of qubits. An immediate corollary of this result is an efficient construction of an approximate unitary k-design, which is a quantum analogue of an approximate k-wise independent function, on n qubits for any k=O(n/log n). Previously, no efficient constructions were known for k>2, while state designs, of which unitary designs are a generalisation, were constructed efficiently in [Ambainis, Emerson 2007].Comment: 16 pages, typo in references fixe
    • …
    corecore