13 research outputs found

    Thermal Re-emission Model

    Get PDF
    Starting from a continuum description, we study the non-equilibrium roughening of a thermal re-emission model for etching in one and two spatial dimensions. Using standard analytical techniques, we map our problem to a generalized version of an earlier non-local KPZ (Kardar-Parisi-Zhang) model. In 2+1 dimensions, the values of the roughness and the dynamic exponents calculated from our theory go like αz1 \alpha \approx z \approx 1 and in 1+1 dimensions, the exponents resemble the KPZ values for low vapor pressure, supporting experimental results. Interestingly, Galilean invariance is maintained althrough.Comment: 4 pages, minor textual corrections and typos, accepted in Physical Review B (rapid

    Stress Management in Sub-90-nm Transistor Architecture

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.1109/TED.2004.835993This brief focuses on the physical characteristics of three dielectric films which can induce a significant degree of tensile or compressive stress in the channel of a sub-90-nm node MOS structure. Manufacturable and highly reliable oxide films have demonstrated, based on simulation, the ability to induce greater than 1.5-GPa tensile stress in the Si channel, when used as shallow trench isolation (STI) fill. Low–temperatureblanketnitridefilmswithastressrangeof2GPacompressiveto greater than 1.4 GPa tensile were also developed to enhance performance in both PMOS and NMOS devices. Combined with a tensile first interlayer dielectric film, the stress management and optimization of the above films can yield significant performance improvement without additional cost, or integration complexities
    corecore