13 research outputs found
Thermal Re-emission Model
Starting from a continuum description, we study the non-equilibrium
roughening of a thermal re-emission model for etching in one and two spatial
dimensions. Using standard analytical techniques, we map our problem to a
generalized version of an earlier non-local KPZ (Kardar-Parisi-Zhang) model. In
2+1 dimensions, the values of the roughness and the dynamic exponents
calculated from our theory go like and in 1+1
dimensions, the exponents resemble the KPZ values for low vapor pressure,
supporting experimental results. Interestingly, Galilean invariance is
maintained althrough.Comment: 4 pages, minor textual corrections and typos, accepted in Physical
Review B (rapid
Stress Management in Sub-90-nm Transistor Architecture
The article of record as published may be found at http://dx.doi.org/10.1109/TED.2004.835993This brief focuses on the physical characteristics of three dielectric films which can induce a significant degree of tensile or compressive stress in the channel of a sub-90-nm node MOS structure. Manufacturable and highly reliable oxide films have demonstrated, based on simulation, the ability to induce greater than 1.5-GPa tensile stress in the Si channel, when used as shallow trench isolation (STI) fill. Low–temperatureblanketnitridefilmswithastressrangeof2GPacompressiveto greater than 1.4 GPa tensile were also developed to enhance performance in both PMOS and NMOS devices. Combined with a tensile first interlayer dielectric film, the stress management and optimization of the above films can yield significant performance improvement without additional cost, or integration complexities
Cmos gate architecture for integration of salicide process in sub 0.1. .muM devices
US6010954Granted Paten