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Thermal re-emission model
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Starting from a continuum description, we study the nonequilibrium roughening of a thermal re-emission
model for etching in one and two spatial dimensions. Using standard analytical techniques, we map our
problem to a generalized version of an earlier nonlocal KRardar-Parisi-Zhangmodel. In 2+1 dimensions,
the values of the roughness and the dynamic exponents calculated from our theoryage #ikel and in 11
dimensions, the exponents resemble the KPZ values for low vapor pressure, supporting experimental results.
Interestingly, Galilean invariance is maintained throughout.
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The subject of kinetic roughening and nonequilibrium In the theoretical front, this phenomenon of shadowing
growths, has been the center interest of far-from-equilibriungrowth (decay, or its partner, the thermal re-emission insta-
physics for more than two decades now. This is mainly dudility has inspired a series of works in +I
to two reasons: on the one hand, due to the ongoing revolimension§®!1>~and in 2+1 dimensions**#1°The the-
tion in the world of microphysics in recent years, the demancPretical forays in fact started with the paper by Karunasiri
of the age is to understand and implement the under|yin@t al’” where from a direct numerical integration of the dy-
mechanism associatédn the other hand, they seem to cor- Namical equation, they were able to show that the self-
relate fields even as diverse as eco|ogica| growths, propagéj.m"al’ity of the contour, evident at small values of the dif-
tion of a crack-front, stock-market predictions, &tél-  fusion constant, is modified by the growth of flat films,
though the processes which have been probed so far, hafgyond a critical height, as the value of the diffusion con-
mostly been concerned only with local effects, such as$tantis increased. Taking clues from their arguments, Roland
molecular-beam-epitaxyMBE) growth, conventional diffu- and Gud® went on to calculate the value of the roughness
sive growths, etc., the importance of the nonlocal effectsconstant, in 1 dimensiongalbeit in the context of a shad-
have been known as early as the 195Q'siter on, with the  Owing mode) and further predicted that in the low tempera-
advent of more sophisticated experimental techniques, noftre phase, the system resembles a KPZ universality Grass
linear effects involving physical vapor deposition agreement with Karunasieit al).” This concept of nonlocal,
(PVO), 248 sputtering techniques and associated growth anghadowing effect was later modifiéd; where a net nonlocal
etching of p|asma fonts have assumed a position of pareﬂUX was observed to give rise to the inherent columnar struc-
mount importance. Whereas in standard MBE type oftures found in experiments. Later on, the domain ef12
growths, the vapor atoms are targeted in a direction normalimension was also probed with the advent of advanced nu-
to the substrate, so that growth is decided by the local envinerical  integration  algorithms and  Monte-Carlo
ronment only, in case of shadowing growths by sputter deposimulations:®'® However, all these attempts, both in-1
sition, vapor atoms are incident at random angles to the sugnd 2+1 dimensions, being predominantly numerical, either
face, so that nonlocal factors gain prominence in thigthrough direct numerical integration of a fundamental
case’ " There have been several experimental follow-ups of-angevin-type equation, or through Monte-Carlo simulation,
this sputtering mechanism as w&lr:** and all the more, giving contradictory values of the expo-

The concept of shadowing effect in a sputtering growthnents obtained by different groups, we ventured an analytical
(or etching essentially arrived with the observation that thin derivation to have a final say regarding the universality class
films often exhibit “an extended network of grooves and ©f these type of sputtered mechanisms. In the process, we
voids in their interiors®! giving rise to columnar structures. Will see that our findings correlate the available experimental
The basic idea is the following. Since in a sputtering growthand numerical observatiorief one of these groupsn 2+1
(etching, particles are allowed to be deposit@térodegion  dimensions and predicts scaling ir-1 dimensions, too.
the surface from all possible angles at random, the rate of With the assumption that the shadowing effect provides
growth is taken to be proportional to the exposure angldhe dominant instability in the system, we apply the nonlocal
6(x), which is a function of the position of incidence of the model proposed by Zhaet al******The model is given by
incoming particle. Now, as the hills have greater exposure
area, they receive more atoms than the valleys. Thus the hills  j(y 1)
continue to grow steeper compared to the depleted valleys,

=pV2h(r,t) = V1+(Vh)2R(r,O)+ n(r,t) (1)

which naturally gives rise to an instability in the system. The ot

idea has been very ingeniously, but intelligently related to the

growth of the relatively larger stalks, in a grassy lawn, whichand

suppress the growth of the shorter orfemd in the process R _ Lo

giving rise to a rough contour. (p(r,O)mp(r' t")=2D&(r—r")s(t—t"), (2
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\h is multiplied with R(F,t), signifies the lateral growtlior
o fi’ etching, as the case may )bassociated and the+" and
,LV\ “ —"signs as its prefix, refer to growth or etching, respec-
[ \9, tively. In the following analysis, we will consider parameter
values as in Ref. 1@&hat is we will be dealing with etching
due to sputterin}g Thus, for our caseF,=4, sp~0, and
s1=~1. Also P(nr r,n "= (n ﬁ’)/w, assuming thermally
re-emitted flux, although this is more of a simplificati®n
than exact truth. With the above description of the complete
equation, we proceed to determine the dynamics in th#-2
dimensional case. Later on, we will discuss our results with
th reference to +1 dimensions, as well.
y Combining Egs(1), (3), and(4) and takingy as the angle
- betweenr andr’ (see Fig. 1, the dynamical etching equa-
tion reduces to

=
A

=

ah R . -
—~pV2h—[1+1(Vh)2]F(r,t)+ 7(r,t), (5)

ﬁrr' S C?t
where

g . 4cos®  sino+6']
P~ e
T (r—r")*+(h—h")

dx'dy’

FIG. 1. Relative orientations of the unit normalsandr’ and
the co-ordinate system described by them. % Jl+[ﬁh’(?’ 9’)]2r 'dr'de’ (6)

where the first term on the r|ght hand side of E:).prOVideS wherefg= ang|e betweenrr, andﬁ = ¢+ w asin F|g 1 and
the diffusive relaxing mechanism for the growifgr etch- 9/ is again defmed as in Fig. 1. In arriving at EqS) and

19 Sriace S he e e s e Colecve ety we nave delberately chosenas one of the aes i he
y o-dimensional plane, to simplify calculations. This can be

middle term is the nonIocaI nonlinear term detailing the ef- done, since on the average this holds true. Also the standard
fects of thermal re-emission and is given by O )
lateral growth assumptiohy h| <1 has been employed. This

R(r,t)=soFo(r,t) +5,F4(T,1), (3) F,(r,t) can be further reduced to
where s, is the zeroth order sticking coefficient asg is 2 L r—rlf1+21(a.,h")2
generated due to the re-emission mecharifsktere we con- Fy(r )~ 8{cost) j =i+ 3(ah") ], )
sider first-order thermal re-emission, that is neglect the ef- -L (r'=r)?+(h—h")?

fects ofs; (i>1). Plugging again from the same reference
and applying the same logic, we consider the flux ofrtith

order particle at position asF,(r,t) which is given by

wherelL is the size of the system. It is important to mention
here that in deriving Eq(7) from Eq. (6), we have used the
mean-value theorem, since/2— 6<0'<w/2+6 (6 is an
angular strip aroundl), the range being evident from Fig. 1.
Fm+1(F1t):(1_Sm)J Z(r,r HF(r',1) The “~" sign justifies the fact that we have taken a mean-
valued average, represented by }¥” around the h-axis,
thereby removing cosé) outside the integral as a first-order
(4) approximation. Simplifying further, we arrive at the analyti-

(r=r")?+(h—h")? cally tractable form oFl(F,t), as given below:

(N7 -n)P(n77,n")

For our case of first-order re-emission, we are concerned

. AL . N 2 L 1_l d..h' 2
with m=0 and 1. Heren is the unit normal to the surface at Fo(rt)~ MJ dr’w. ®)
r, pointing outwardsn’ is the unit normal at’ andn;;, is T -t r'=r|
the unit vector connecting andr’ (see Fig. 1 P(n;/7,n") | arriving at the above equations, we have put on a very

is the probability, per unit solid angle, that the reemittedstandard assumption for any nonlocal model that the height
particle flies off along npr and is expressed as d|fferenceh h'), calculated between any two pointgnd

(Neen) w28 Z(r,r 1) is equal to unity except when there " of the growing surface should be much smaller than their
is no line of sight between the surface elements andr’ distance of separation, i.dh—h’|<|r—r’|, a basic prop-

and zero otherwise. The nonlinear fact(z§1+(Vh)2 which  erty expected of any nonlocal process.
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With this assumption and the mean-valued average done K71

beforehand, the equation of motion now becomes Pk, k')=N\ o (15
7

[1+ l(ﬁh)z] and our job now is to evaluate the definite scaling behavior
| 2 for f(k,k') by the evaluation of a number fay from Eq.
(1322 Applying simple Laplace transform and going
4(cosh)? (L .1 o . through the standard steps, it is easy to see that the dominat-
+— fder T [ /h(r") ]+ n(r,t). ing contribution of the double integral in EqL3) implies
that »=1 (Ref. 24 and this gives the value
€)

Now, we try to look at the possible large-time, long-distance ¢(k,k’)~)\i, (16)
behavior of the system. We can easily see that the KPZ k'

part”? consntutmg the.secor_ld term on the ”ghttha'.‘d side oﬁ.e., the major contributing part of the potential is effectively
the above equation will vanish as the system size is taken tduced to a single variable mode. Now, we can simply
be sufficiently large. In deriving the above form, terms plug-in results from Ref. 22 and write doWn the dynamic
higher than Veh)2 order have been neglected. The final equa-exponentz as

tion now looks like

—

dh 8(cos#)? (L 1
2n— { ) f dr’
™ Lo frf=r

z=2+K, 17)
dh L -
E~VV2h+j dr' ¢(r,r")|a,/h|?+(r,t), (10  where
0
K=-24/23=-1.04 (19
where 3 . . .
for our cas€® One obvious point to be noted here is the fact
AN that owing to the Galilean invariance of E¢P), we can
o(r,r')= | 3 (11)  easily see that
r'—r
a+z=2 (19

A =\o(cosh)? is an adjustable coupling parameter, such that

we will later put\ o equal to unity. The fact that the assump- and interestingly enough, the general tendency of the system

tions employed above are perfectly trustworthy, can be crosis to flow towards a short-ranged fixed poitite long-ranged

checked from the fact that Eq11) maintains translational fixed point comes out to be unphysical with the specific pa-

invariance which was an important feature of our starting'ameter values, for our particular cas€his effect, as we

Eq. (4). will see, also holds sway in11 dimensions, where the sys-
Equation(10) can be easily mapped to the phenomenoiem flows towards the KPZ fixed point.

logical equation considered in Ref. 22. The only trick lies in  Combining the last two equations, we get

a suitable wave-vector representation of the effective long-

range potentiakp(r,r’) in our case. Obviously, this cannot a=-K. (20

be a simple plug-in from the earlier equation of motfdn, Thus the critical exponents come out as

since, the interacting potential is apparently a multivalued

function here. To progress further, we move on to the wave- 22

vector representation of this interacting potential which is z= Z),:O'%'
given by the scaled relation
24
, N a=o3= 1.04, (21
d(k,k )—4kf ik (12
o
Here the scaling function looks like p=~1.08,
k , Ye Y i.e., a~B~z~1 in reasonable agreement with experimental
f(_) ZJ dXXe"Xf - (13 and numerical finding$'®° (experimental values arex
(Y— hx =0.96+0.06, $=0.91+0.03, andz=1.05+0.08), within
k’ experimental error bars. The fact that the the@apd also

o ) experiment®) predicts a~1 indicates that the effects of
Considering the scaling ansatz overhangs might be margingRef. 1, p. 110. Also to be
) noted is the invariance of the Galilean identity- z=2. Be-
f(k k’)=f(—> =A( 5) (14) fore concluding this portion, it must be mentioned that for
' K’ K| the opposite scenario, i.e., growth under first-order thermal
re-emission, an identical analysis as above shows immedi-
we get ately that now the reduced dynamical equation has a form

041405-3



RAPID COMMUNICATIONS

AMIT K. CHATTOPADHYAY PHYSICAL REVIEW B 65 041405R)

nearly the same as that in Ed.0) but with a negative non- of both the available short-ranged and long-ranged fixed
local potential. This automatically suggests that due to thoints in the 2-1-dimensional case, the system chooses the
attractive nature of this potential, the growth fllr;ally Stops algport-ranged fixed pointan alternative statement that there
iSnUfFCI(\a/\?ewfi:?ég;zt;{n:\i{eimvsi?&iﬁ%;ﬁzﬁ Teoémligtsﬁ(r)?]St_'chisis Galilean invariance in the system, since the other fixed
mgr)l/éed change in the scaling properties, dependi’ng osﬁ_‘o'nt basically gives an unphysical picture WMK_O)' al-
whether it is a growth or an etching process has been di ough the shadowing effect fundamentally remains a nonlo-
cussed elsewhere al$d. cal contribution. This seems to suggest that whenever we are
For the 11 dimensional case, we follow exactly similar talking about nonlocal interactions, it does not necessarily
lines, the only modification being the consideration @f  mean that the long-ranged structure should control the asso-
=0 and#=0 or 7 (depending on growth or decay, respec-ciated dynamics. Instead the short-ranged part of the contri-
tively) in Eq. (6). Thereafter, proceeding likewise, the domi- pytion might also take the upper hand, though obviously de-
nating long-ranged part comes out to ) [5dr’(9,-h)%,  pending on the type of interaction we are considering. The
with v(r)~L/r. Thus in the large time limit, as—L, we  jssue seems to demand further studies. As an adjoinder, we
see that the system approaches the conventional KPZ fixggould like to mention that in the-£1-dimensional situation,

point and naturally the exponents also resemble the KP%ging pasically dominated by the KPZ fixed point, no such
universality class, which can be looked upon as sort of aomplexity arises over there.

analogy with the shadowing cas@o avoid unnecessary rep-

etition of identical calculations, as in the+2-dimensional The author(A.K.C.) would like to sincerely acknowledge
case, we have neglected any further details il ddimen-  illuminating interactions with Y.-P. Zhao and J. Drotar. All
sions. discussions with Dr. Sergei Egorov and Y.-J. Lee are ac-

All said and done, however, there is still one open quesknowledged. A.K.C. is indebted to M.J. Alava for his hospi-
tion which needs to be resolved. This is the fact that in spitdality at the HUT.
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