44 research outputs found

    Antideuteron production in proton-proton and proton-nucleus collisions

    Get PDF
    The experimental data of the antideuteron production in proton-proton and proton-nucleus collisions are analyzed within a simple model based on the diagrammatic approach to the coalescence model. This model is shown to be able to reproduce most of existing data without any additional parameter.Comment: To appear in Eur. Phys. J A (2002

    Parameterization of the antiproton inclusive production cross section on nuclei

    Full text link
    A new parameterization of the antiproton inclusive production cross section in proton-proton and proton-nucleus collisions is proposed. A sample of consistent pA->pbar X$ experimental data sets measured on 1<A<208 nuclei, from 12 GeV up to 400 GeV incident energy, have been used to constrain the parameters. A broader energy domain is covered for the pp->pbar X reaction with a simplified functional form used in the fits. The agreement obtained with the data is good. The results are discussed.Comment: 10 pages, 11 figures, 7 tables, submitted to Phys. Rev.

    A model for A=3 antinuclei production in proton-nucleus collisions

    Get PDF
    A simple coalescence model based on the same diagrammatic approach of antimatter production in hadronic collisions as used previously for antideuterons is used here for the hadroproduction of mass 3 antinuclei. It is shown that the model is able to reproduce the existing experimental data on Tbar and 3hebar production without any additional parameter.Comment: 7 figures. submitted to Eur. Phys. J.

    Differential effects of lenalidomide during plasma cell differentiation.

    Get PDF
    Thalidomide, lenalidomide and pomalidomide have greatly improved the outcome of patients with multiple myeloma. However, their effects on plasma cells, the healthy counterpart of myeloma cells, are unknown. Here, we investigated lenalidomide effects on normal human plasma cell generation using an in vitro model. Lenalidomide inhibited the generation of pre-plasmablasts and early plasma cells, while it moderately affected plasmablast production. It also reduced the expression level of Ikaros, Aiolos, and IRF4 transcription factors, in plasmablasts and early plasma cells. This suggests that their differential sensitivity to lenalidomide is not due to a difference in Ikaros or Aiolos degradation. Lenalidomide also inhibited long-lived plasma cell generation, but did not impair their long-term survival once generated. This last observation is in agreement with the finding that lenalidomide treatment for 3-18 months did not affect the bone marrow healthy plasma cell count in allografted patients with multiple myeloma. Our findings should prompt to investigate whether lenalidomide resistance in patients with multiple myeloma could be associated with the emergence of malignant plasmablasts or long-lived plasma cells that are less sensitive to lenalidomide

    General Analysis of Antideuteron Searches for Dark Matter

    Full text link
    Low energy cosmic ray antideuterons provide a unique low background channel for indirect detection of dark matter. We compute the cosmic ray flux of antideuterons from hadronic annihilations of dark matter for various Standard Model final states and determine the mass reach of two future experiments (AMS-02 and GAPS) designed to greatly increase the sensitivity of antideuteron detection over current bounds. We consider generic models of scalar, fermion, and massive vector bosons as thermal dark matter, describe their basic features relevant to direct and indirect detection, and discuss the implications of direct detection bounds on models of dark matter as a thermal relic. We also consider specific dark matter candidates and assess their potential for detection via antideuterons from their hadronic annihilation channels. Since the dark matter mass reach of the GAPS experiment can be well above 100 GeV, we find that antideuterons can be a good indirect detection channel for a variety of thermal relic electroweak scale dark matter candidates, even when the rate for direct detection is highly suppressed.Comment: 44 pages, 15 Figure

    Transcriptomic analysis of milk somatic cells in mastitis resistant and susceptible sheep upon challenge with Staphylococcus epidermidis and Staphylococcus aureus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The existence of a genetic basis for host responses to bacterial intramammary infections has been widely documented, but the underlying mechanisms and the genes are still largely unknown. Previously, two divergent lines of sheep selected for high/low milk somatic cell scores have been shown to be respectively susceptible and resistant to intramammary infections by <it>Staphylococcus spp</it>. Transcriptional profiling with an 15K ovine-specific microarray of the milk somatic cells of susceptible and resistant sheep infected successively by <it>S. epidermidis </it>and <it>S. aureus </it>was performed in order to enhance our understanding of the molecular and cellular events associated with mastitis resistance.</p> <p>Results</p> <p>The bacteriological titre was lower in the resistant than in the susceptible animals in the 48 hours following inoculation, although milk somatic cell concentration was similar. Gene expression was analysed in milk somatic cells, mainly represented by neutrophils, collected 12 hours post-challenge. A high number of differentially expressed genes between the two challenges indicated that more T cells are recruited upon inoculation by <it>S. aureus </it>than <it>S. epidermidis</it>. A total of 52 genes were significantly differentially expressed between the resistant and susceptible animals. Further Gene Ontology analysis indicated that differentially expressed genes were associated with immune and inflammatory responses, leukocyte adhesion, cell migration, and signal transduction. Close biological relationships could be established between most genes using gene network analysis. Furthermore, gene expression suggests that the cell turn-over, as a consequence of apoptosis/granulopoiesis, may be enhanced in the resistant line when compared to the susceptible line.</p> <p>Conclusions</p> <p>Gene profiling in resistant and susceptible lines has provided good candidates for mapping the biological pathways and genes underlying genetically determined resistance and susceptibility towards <it>Staphylococcus </it>infections, and opens new fields for further investigation.</p
    corecore