12,331 research outputs found

    LAMMR world data base documentation support and demonstrations

    Get PDF
    The primary purpose of the World Surface Map is to provide the LAMMR subsystem with world surface type classifications that are used to set up LAMMR LEVEL II process control. This data base will be accessed solely by the LAMMR subsystem. The SCATT and ALT subsystems will access the data base indirectly through the T sub b (Brightness Temperature) Data Bank, where the surface types were updated from a priori to current classification, and where the surface types were organized on an orbital subtrack basis. The single most important factor in the design of the World Surface Maps is the ease of access to the information while the complexity of generating these maps is of lesser importance because their generation is a one-time, off-line process. The World Surface Map provides storage of information with a resolution of 7 km necessary to set flags concerning the earth's features with a different set of maps for each month of the year

    Context sensitive formulations of antenna pattern correction and side lobe compensation for NOSS/LAMMR real time processing

    Get PDF
    Large antenna multi-channel microwave radiometer (LAMMR) software specifications were written for LAMMR ground processing. There is a need to determine more computationally-efficient antenna temperature correction methods in compensating side lobe contributions especially near continents, islands and weather fronts. One of the major conclusions was that the antenna pattern corrections (APC) processes did not accomplish the implied goals of compensating for the antenna side lobe influences on brightness temperature. A-priori knowledge of land/water locations was shown to be needed and had to be incorporated in a context sensitive APC process if the artifacts caused by land presence is to be avoided. The high temperatures in land regions can severely bias the lower ocean response

    An information adaptive system study report and development plan

    Get PDF
    The purpose of the information adaptive system (IAS) study was to determine how some selected Earth resource applications may be processed onboard a spacecraft and to provide a detailed preliminary IAS design for these applications. Detailed investigations of a number of applications were conducted with regard to IAS and three were selected for further analysis. Areas of future research and development include algorithmic specifications, system design specifications, and IAS recommended time lines

    Selection Effects in Identifying Magnetic Clouds and the Importance of the Closest Approach Parameter

    Get PDF
    This study is motivated by the unusually low number of magnetic clouds (MCs) that are strictly identified within interplanetary coronal mass ejections (ICMEs), as observed at 1 AU; this is usually estimated to be around 30% or lower. But a looser definition of MCs may significantly increase this percentage. Another motivation is the unexpected shape of the occurrence distribution of the observers' "closest approach distances" (measured from a MC's axis, and called CA) which drops off somewhat rapidly as |CA| (in % of MC radius) approaches 100%, based on earlier studies. We suggest, for various geometrical and physical reasons, that the |CA|-distribution should be somewhere between a uniform one and the one actually observed, and therefore the 30% estimate should be higher. So we ask, When there is a failure to identify a MC within an ICME, is it occasionally due to a large |CA| passage, making MC identification more difficult, i.e., is it due to an event selection effect? In attempting to answer this question we examine WIND data to obtain an accurate distribution of the number of MCs vs. |CA| distance, whether the event is ICME-related or not, where initially a large number of cases (N=98) are considered. This gives a frequence distribution that is far from uniform, confirming earlier studies. This along with the fact that there are many ICME identification-parameters that do not depend on |CA| suggest that, indeed an MC event selection effect may explain at least part of the low ratio of (No. MCs)/(No. ICMEs). We also show that there is an acceptable geometrical and physical consistency in the relationships for both average "normalized" magnetic field intensity change and field direction change vs. |CA| within a MC, suggesting that our estimates of |CA|, B(sub 0) (magnetic field intensity on the axis), and choice of a proper "cloud coordinate" system (all needed in the analysis) are acceptably accurate. Therefore the MC fitting model (Lepping et al., 1990) is adequate, on average, for our analysis. However, this selection effect is not likely to completely answer our original question, on the unexpected ratio of MCs to ICMEs, so we must look for other factors, such as peculiarities of CME birth conditions. As a by-product of this analysis, we determine that the first order structural effects within a MC due to its interaction with the solar wind, plus the MC's usual expansion at 1 AU (i.e., the non-force free components of the MC's field) are, on average, weakly dependent on radial distance from the MC's axis; that is, in the outer reaches of a typical MC the non-force free effects show up, but even there they are rather weak. Finally, we show that it is not likely that a MC's size distribution statistically controls the occurrence distribution of the estimated |CA|s

    Off-diagonal correlations in a one-dimensional gas of dipolar bosons

    Full text link
    We present a quantum Monte Carlo study of the one-body density matrix (OBDM) and the momentum distribution of one-dimensional dipolar bosons, with dipole moments polarized perpendicular to the direction of confinement. We observe that the long-range nature of the dipole interaction has dramatic effects on the off-diagonal correlations: although the dipoles never crystallize, the system goes from a quasi-condensate regime at low interactions to a regime in which quasi-condensation is discarded, in favor of quasi-solidity. For all strengths of the dipolar interaction, the OBDM shows an oscillatory behavior coexisting with an overall algebraic decay; and the momentum distribution shows sharp kinks at the wavevectors of the oscillations, Q=±2πnQ = \pm 2\pi n (where nn is the atom density), beyond which it is strongly suppressed. This \emph{momentum filtering} effect introduces a characteristic scale in the momentum distribution, which can be arbitrarily squeezed by lowering the atom density. This shows that one-dimensional dipolar Bose gases, realized e.g. by trapped dipolar molecules, show strong signatures of the dipolar interaction in time-of-flight measurements.Comment: 10 pages, 6 figures. v2: fixed a mistake in the comparison with Ref. 9, as well as several typos. Published versio

    Social Determinants of Health in Deaf Communities

    Get PDF

    On the Analytic Structure of the Quark Self-Energy in Nambu-Jona- Lasinio Models

    Full text link
    The self-energy of quarks is investigated for various models which are inspired by the Nambu--Jona-Lasinio (NJL) model. Including, beyond the Hartree-Fock approximation, terms up to second-order in the quark interaction, the real and imaginary parts of scalar and vector components of the self-energy are discussed. The second-order contributions depend on the energy and momentum of the quark under consideration. This leads to solutions of the Dirac equation which are significantly different from those of a free quark or a quark with constant effective mass, as obtained in the Hartree-Fock approximation.Comment: 15 pages LaTeX, 6 figures can be obtained from author

    Anharmonicity Induced Resonances for Ultracold Atoms and their Detection

    Full text link
    When two atoms interact in the presence of an anharmonic potential, such as an optical lattice, the center of mass motion cannot be separated from the relative motion. In addition to generating a confinement-induced resonance (or shifting the position of an existing Feshbach resonance), the external potential changes the resonance picture qualitatively by introducing new resonances where molecular excited center of mass states cross the scattering threshold. We demonstrate the existence of these resonances, give their quantitative characterization in an optical superlattice, and propose an experimental scheme to detect them through controlled sweeping of the magnetic field.Comment: 6 pages, 5 figures; expanded presentatio

    The Complete Characterization of Fourth-Order Symplectic Integrators with Extended-Linear Coefficients

    Get PDF
    The structure of symplectic integrators up to fourth-order can be completely and analytical understood when the factorization (split) coefficents are related linearly but with a uniform nonlinear proportional factor. The analytic form of these {\it extended-linear} symplectic integrators greatly simplified proofs of their general properties and allowed easy construction of both forward and non-forward fourth-order algorithms with arbitrary number of operators. Most fourth-order forward integrators can now be derived analytically from this extended-linear formulation without the use of symbolic algebra.Comment: 12 pages, 2 figures, submitted to Phys. Rev. E, corrected typo
    • …
    corecore