3,870 research outputs found
Pitch ability as an aptitude for tone learning
Tone languages such as Mandarin use voice pitch to signal lexical contrasts, presenting a challenge for second/foreign language (L2) learners whose native languages do not use pitch in this manner. The present study examined components of an aptitude for mastering L2 lexical tone. Native English speakers with no previous tone language experience completed a Mandarin word learning task, as well as tests of pitch ability, musicality, L2 aptitude, and general cognitive ability. Pitch ability measures improved predictions of learning performance beyond musicality, L2 aptitude, and general cognitive ability and also predicted transfer of learning to new talkers. In sum, although certain nontonal measures help predict successful tone learning, the central components of tonal aptitude are pitch-specific perceptual measures
Test of classical nucleation theory on deeply supercooled high-pressure simulated silica
We test classical nucleation theory (CNT) in the case of simulations of
deeply supercooled, high density liquid silica, as modelled by the BKS
potential. We find that at density ~g/cm, spontaneous nucleation
of crystalline stishovite occurs in conventional molecular dynamics simulations
at temperature T=3000 K, and we evaluate the nucleation rate J directly at this
T via "brute force" sampling of nucleation events. We then use parallel,
constrained Monte Carlo simulations to evaluate , the free energy
to form a crystalline embryo containing n silicon atoms, at T=3000, 3100, 3200
and 3300 K. We find that the prediction of CNT for the n-dependence of fits reasonably well to the data at all T studied, and at 3300 K yields a
chemical potential difference between liquid and stishovite that matches
independent calculation. We find that , the size of the critical nucleus,
is approximately 10 silicon atoms at T=3300 K. At 3000 K, decreases to
approximately 3, and at such small sizes methodological challenges arise in the
evaluation of when using standard techniques; indeed even the
thermodynamic stability of the supercooled liquid comes into question under
these conditions. We therefore present a modified approach that permits an
estimation of at 3000 K. Finally, we directly evaluate at T=3000
K the kinetic prefactors in the CNT expression for J, and find physically
reasonable values; e.g. the diffusion length that Si atoms must travel in order
to move from the liquid to the crystal embryo is approximately 0.2 nm. We are
thereby able to compare the results for J at 3000 K obtained both directly and
based on CNT, and find that they agree within an order of magnitude.Comment: corrected calculation, new figure, accepted in JC
Ion acceleration and anomalous transport in the near wake of a plasma limiter
Ion acceleration and anomalous transport were studied experimentally in the near wake region of an electrically floating disk limiter immersed in two different types of collisionless, supersonically flowing, magnetized plasmas: the first initially quiescent, the second initially turbulent. Ion densities and velocity distributions were obtained using a nonperturbing laser induced fluorescence diagnostic. Large-amplitude, low-frequency turbulence was observed at the obstacle edge and in the wake. Rapid ion and electron configuration space transport and ion velocity space transport were observed. Configuration space and velocity space transport were similar for both quiescent and turbulent plasma-obstacle systems, suggesting that plasma-obstacle effects outweigh the effects of initial plasma turbulence levels
Asymptotically optimal quantum channel reversal for qudit ensembles and multimode Gaussian states
We investigate the problem of optimally reversing the action of an arbitrary
quantum channel C which acts independently on each component of an ensemble of
n identically prepared d-dimensional quantum systems. In the limit of large
ensembles, we construct the optimal reversing channel R* which has to be
applied at the output ensemble state, to retrieve a smaller ensemble of m
systems prepared in the input state, with the highest possible rate m/n. The
solution is found by mapping the problem into the optimal reversal of Gaussian
channels on quantum-classical continuous variable systems, which is here solved
as well. Our general results can be readily applied to improve the
implementation of robust long-distance quantum communication. As an example, we
investigate the optimal reversal rate of phase flip channels acting on a
multi-qubit register.Comment: 17 pages, 3 figure
Bivalirudin versus heparin in primary PCI: clinical outcomes and cost analysis.
Background: The evidence for benefits of bivalirudin over heparin has recently been challenged. We aimed to analyse the safety and cost-effectiveness following reintroduction of heparin instead of bivalirudin as the standard anticoagulation for primary percutaneous coronary intervention (PPCI) in a high-volume centre. Methods and results: This analysis was an open-label, prospective registry including all patients admitted to our centre for PPCI from April 2014 to April 2016. Heparin was reintroduced as standard anticoagulant in April 2015. During the 2 years, 1291 patients underwent a PPCI, 662 in the Bivalirudin protocol period (Cohort B) and 629 in the Heparin protocol period (Cohort H). Baseline and procedural characteristics were not significantly different, except for a higher use of thromboaspiration and femoral access in the earlier Cohort B. Glycoprotein 2b3a (Gp2b3a) antagonists were used in 24% of the patients in Cohort B versus 28% in Cohort H (P<0.01). We did not observe any differences in death at 180 days (11.03% in Cohort B vs 11.29% in Cohort H)(HR 95% CI 0.98 (0.72 to 1.33), P=0.88). The incidence of any bleeding complications at 30 days did not differ between the two periods (21.9% vs 21.9%, P=0.99). The cost related to the anticoagulants amounted to £246 236 in Cohort B versus £4483 in Cohort H (£324 406 vs £102 347 when adding Gp2b3a antagonists). Conclusion: We did not find clinically relevant changes in patient outcomes, including bleeding complications with reintroduction of heparin in our PPCI protocol. However, the use of heparin was associated with a major reduction in treatment costs
Homogeneous nucleation near a second phase transition and Ostwald's step rule
Homogeneous nucleation of the new phase of one transition near a second phase
transition is considered. The system has two phase transitions, we study the
nucleation of the new phase of one of these transitions under conditions such
that we are near or at the second phase transition. The second transition is an
Ising-like transition and lies within the coexistence region of the first
transition. It effects the formation of the new phase in two ways. The first is
by reducing the nucleation barrier to direct nucleation. The second is by the
system undergoing the second transition and transforming to a state in which
the barrier to nucleation is greatly reduced. The second way occurs when the
barrier to undergoing the second phase transition is less than that of the
first phase transition, and is in accordance with Ostwald's rule.Comment: 11 pages, 5 figure
Profiling the Audience for Self-Transcendent Media: A National Survey
This article reports the findings from a national survey of self-transcendent (or inspiring) media audience members in the United States. Exposure to self-transcendent content is socially significant because, theoretically, it can orient users towards matters beyond themselves, ultimately promoting connections with others and altruistic behaviors. However, to date, little is known about the daily audiences for such fare. Four primary questions guided the investigation: (1) What are the media sources and contents identified as “inspiring” by the audience?, (2) Who makes up the current U.S. audience for self-transcendent media content?, (3) What personality traits and viewer characteristics are associated with self-transcendent media consumption?, and (4) What prosocial and altruistic behaviors are associated with self-transcendent media consumption? To address these questions, a nationally representative survey (n = 3,006) was conducted. The findings are discussed in relation to the growing body of scholarship on positive media psychology
Exploring the Spirit in U.S. Audiences: The Role of the Virtue of Transcendence in Inspiring Media Consumption
Little is yet known about audiences who routinely seek out media content that is inspirational in nature. The current study expands the research on inspirational media by utilizing a nationally representative sample of U.S. audiences (n = 2,016) to explore relationships between inspiring media exposure, trait transcendence, and self-transcendent emotions. Results show that media content is a reliable source for everyday self-transcendent emotional experiences in U.S. audiences. These experiences are most frequently encountered by persons with high levels of trait spirituality and gratitude. The profile of U.S. audiences that seek out inspiring media is discussed
Evolutionary Roots of Property Rights; The Natural and Cultural Nature of Human Cooperation
Debates about the role of natural and cultural selection in the development of prosocial, antisocial and socially neutral mechanisms and behavior raise questions that touch property rights, cooperation, and conflict. For example, some researchers suggest that cooperation and prosociality evolved by natural selection (Hamilton 1964, Trivers 1971, Axelrod and Hamilton 1981, De Waal 2013, 2014), while others claim that natural selection is insufficient for the evolution of cooperation, which required in addition cultural selection (Sterelny 2013, Bowles and Gintis 2003, Seabright 2013, Norenzayan 2013). Some scholars focus on the complexity and hierarchical nature of the evolution of cooperation as involving different tools associated with lower and the higher levels of competition (Nowak 2006, Okasha 2006); others suggest that humans genetically inherited heuristics that favor prosocial behavior such as generosity, forgiveness or altruistic punishment (Ridley 1996, Bowles and Gintis 2004, Rolls 2005). We argue these mechanisms are not genetically inherited; rather, they are features inherited through cultural selection. To support this view we invoke inclusive fitness theory, which states that individuals tend to maximize their inclusive fitness, rather than maximizing group fitness. We further reject the older notion of natural group selection - as well as more recent versions (West, Mouden, Gardner 2011) – which hold that natural selection favors cooperators within a group (Wynne-Edwards 1962). For Wynne-Edwards, group selection leads to group adaptations; the survival of individuals therefore depends on the survival of the group and a sharing of resources. Individuals who do not cooperate, who are selfish, face extinction due to rapid and over-exploitation of resources
Heating up the forest: Open-top chamber warming manipulation of arthropod communities at Harvard and Duke Forests
1.Recent observations indicate that climatic change is altering biodiversity, and models suggest that the consequences of climate change will differ across latitude. However, long-term experimental field manipulations that directly test the predictions about organisms\u27 responses to climate change across latitude are lacking. Such experiments could provide a more mechanistic understanding of the consequences of climate change on ecological communities and subsequent changes in ecosystem processes, facilitating better predictions of the effects of future climate change. 2.This field experiment uses octagonal, 5-m-diameter (c.22m 3) open-top chambers to simulate warming at northern (Harvard Forest, Massachusetts) and southern (Duke Forest, North Carolina) hardwood forest sites to determine the effects of warming on ant and other arthropod populations and communities near the edges of their ranges. Each site has 12 plots containing open-top chambers that manipulate air temperature incrementally from ambient to 6°C above ambient. Because the focus of this study is on mobile, litter- and soil-dwelling arthropods, standard methods for warming chambers (e.g. soil-warming cables or infrared heaters applied to relatively small areas) were inappropriate and new technological approaches using hydronic heating and forced air movement were developed. 3.We monitor population dynamics, species composition, phenology and behaviour of ants and other arthropods occupying these experimental chambers. Microclimatic measurements in each chamber include the following: air temperature (three), soil temperatures (two each in organic and mineral soil), photosynthetically active radiation (PAR), relative humidity and soil moisture (one each). In two chambers, we are also measuring soil heat flux, associated soil temperatures at 2 and 6cm and volumetric water content. To assess the composition, phenology and abundance of arthropod communities within the experiment, we use monthly pitfall trapping and annual Winkler sampling. We also census artificial and natural ant nests to monitor changes in ant colony size and productivity across the temperature treatments. 4.This experiment is a long-term ecological study that provides opportunities for collaborations across a broad spectrum of ecologists, including those studying biogeochemical, microbial and plant responses to warming. Future studies also may include implementation of multifactorial climate manipulations, examination of interactions across trophic levels and quantification of changes in ecosystem processes. © 2011 The Authors. Methods in Ecology and Evolution © 2011 British Ecological Society
- …