688 research outputs found

    Multitarget Stool DNA Testing for Colorectal-Cancer Screening

    Get PDF
    BACKGROUND An accurate, noninvasive test could improve the effectiveness of colorectal-cancer screening. METHODS We compared a noninvasive, multitarget stool DNA test with a fecal immunochemical test (FIT) in persons at average risk for colorectal cancer. The DNA test includes quantitative molecular assays for KRAS mutations, aberrant NDRG4 and BMP3 methylation, and β-actin, plus a hemoglobin immunoassay. Results were generated with the use of a logistic-regression algorithm, with values of 183 or more considered to be positive. FIT values of more than 100 ng of hemoglobin per milliliter of buffer were considered to be positive. Tests were processed independently of colonoscopic findings. RESULTS Of the 9989 participants who could be evaluated, 65 (0.7%) had colorectal cancer and 757 (7.6%) had advanced precancerous lesions (advanced adenomas or sessile serrated polyps measuring ≥1 cm in the greatest dimension) on colonoscopy. The sensitivity for detecting colorectal cancer was 92.3% with DNA testing and 73.8% with FIT (P=0.002). The sensitivity for detecting advanced precancerous lesions was 42.4% with DNA testing and 23.8% with FIT (P<0.001). The rate of detection of polyps with high-grade dysplasia was 69.2% with DNA testing and 46.2% with FIT (P=0.004); the rates of detection of serrated sessile polyps measuring 1 cm or more were 42.4% and 5.1%, respectively (P<0.001). Specificities with DNA testing and FIT were 86.6% and 94.9%, respectively, among participants with nonadvanced or negative findings (P<0.001) and 89.8% and 96.4%, respectively, among those with negative results on colonoscopy (P<0.001). The numbers of persons who would need to be screened to detect one cancer were 154 with colonoscopy, 166 with DNA testing, and 208 with FIT. CONCLUSIONS In asymptomatic persons at average risk for colorectal cancer, multitarget stool DNA testing detected significantly more cancers than did FIT but had more false positive results

    Colorectal carcinomas with microsatellite instability display a different pattern of target gene mutations according to large bowel site of origin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Only a few studies have addressed the molecular pathways specifically involved in carcinogenesis of the distal colon and rectum. We aimed to identify potential differences among genetic alterations in distal colon and rectal carcinomas as compared to cancers arising elsewhere in the large bowel.</p> <p>Methods</p> <p>Constitutional and tumor DNA from a test series of 37 patients with rectal and 25 patients with sigmoid carcinomas, previously analyzed for microsatellite instability (MSI), was studied for <it>BAX</it>, <it>IGF2R</it>, <it>TGFBR2</it>, <it>MSH3</it>, and <it>MSH6 </it>microsatellite sequence alterations, <it>BRAF </it>and <it>KRAS </it>mutations, and <it>MLH1 </it>promoter methylation. The findings were then compared with those of an independent validation series consisting of 36 MSI-H carcinomas with origin from each of the large bowel regions. Immunohistochemical and germline mutation analyses of the mismatch repair system were performed when appropriate.</p> <p>Results</p> <p>In the test series, <it>IGFR2 </it>and <it>BAX </it>mutations were present in one and two out of the six distal MSI-H carcinomas, respectively, and no mutations were detected in <it>TGFBR2</it>, <it>MSH3</it>, and <it>MSH6</it>. We confirmed these findings in the validation series, with <it>TGFBR2 </it>and <it>MSH3 </it>microsatellite mutations occurring less frequently in MSI-H rectal and sigmoid carcinomas than in MSI-H colon carcinomas elsewhere (<it>P </it>= 0.00005 and <it>P </it>= 0.0000005, respectively, when considering all MSI-carcinomas of both series). No <it>MLH1 </it>promoter methylation was observed in the MSI-H rectal and sigmoid carcinomas of both series, as compared to 53% found in MSI-H carcinomas from other locations (<it>P </it>= 0.004). <it>KRAS </it>and <it>BRAF </it>mutational frequencies were 19% and 43% in proximal carcinomas and 25% and 17% in rectal/sigmoid carcinomas, respectively.</p> <p>Conclusion</p> <p>The mechanism and the pattern of genetic changes driving MSI-H carcinogenesis in distal colon and rectum appears to differ from that occurring elsewhere in the colon and further investigation is warranted both in patients with sporadic or hereditary disease.</p

    Intracranial Administration of P Gene siRNA Protects Mice from Lethal Chandipura Virus Encephalitis

    Get PDF
    Background: In parts of India, Chandipura Virus (CHPV) has emerged as an encephalitis causing pathogen in both epidemic and sporadic forms. This pediatric disease follows rapid course leading to 55–75 % mortality. In the absence of specific treatment, effectiveness of RNA interference (RNAi) was evaluated. Methods and Findings: Efficacy of synthetic short interfering RNA (siRNA) or short hairpin RNA (shRNA) in protecting mice from CHPV infection was assessed. The target genes were P and M genes primarily because important role of the former in viral replication and lethal nature of the latter. Real time one step RT-PCR and plaque assay were used for the assessment of gene silencing. Using pAcGFP1N1-CHPV-P, we showed that P-2 siRNA was most efficient in reducing the expression of P gene in-vitro. Both quantitative assays documented 2logs reduction in the virus titer when P-2, M-5 or M-6 siRNAs were transfected 2hr post infection (PI). Use of these siRNAs in combination did not result in enhanced efficiency. P-2 siRNA was found to tolerate four mismatches in the center. As compared to five different shRNAs, P-2 siRNA was most effective in inhibiting CHPV replication. An extended survival was noted when mice infected intracranially with 100 LD 50 CHPV were treated with cationic lipid complexed 5 mg P-2 siRNA simultaneously. Infection with 10LD 50 and treatment with two doses of siRNA first, simultaneously and second 24 hr PI, resulted in 70 % survival. Surviving mice showed 4logs less CHPV titers in brain without histopathological changes or antibody response. Gene expression profiles of P-2 siRNA treated mice showed no interferon response. First dose of siRNA at 2h

    Systematic Identification of Novel, Essential Host Genes Affecting Bromovirus RNA Replication

    Get PDF
    Positive-strand RNA virus replication involves viral proteins and cellular proteins at nearly every replication step. Brome mosaic virus (BMV) is a well-established model for dissecting virus-host interactions and is one of very few viruses whose RNA replication, gene expression and encapsidation have been reproduced in the yeast Saccharomyces cerevisiae. Previously, our laboratory identified ∼100 non-essential host genes whose loss inhibited or enhanced BMV replication at least 3-fold. However, our isolation of additional BMV-modulating host genes by classical genetics and other results underscore that genes essential for cell growth also contribute to BMV RNA replication at a frequency that may be greater than that of non-essential genes. To systematically identify novel, essential host genes affecting BMV RNA replication, we tested a collection of ∼900 yeast strains, each with a single essential gene promoter replaced by a doxycycline-repressible promoter, allowing repression of gene expression by adding doxycycline to the growth medium. Using this strain array of ∼81% of essential yeast genes, we identified 24 essential host genes whose depleted expression reproducibly inhibited or enhanced BMV RNA replication. Relevant host genes are involved in ribosome biosynthesis, cell cycle regulation and protein homeostasis, among other cellular processes. BMV 2aPol levels were significantly increased in strains depleted for a heat shock protein (HSF1) or proteasome components (PRE1 and RPT6), suggesting these genes may affect BMV RNA replication by directly or indirectly modulating 2aPol localization, post-translational modification or interacting partners. Investigating the diverse functions of these newly identified essential host genes should advance our understanding of BMV-host interactions and normal cellular pathways, and suggest new modes of virus control

    The effect of watchful waiting compared to immediate test ordering instructions on general practitioners' blood test ordering behaviour for patients with unexplained complaints; a randomized clinical trial (ISRCTN55755886)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Immediate blood testing for patients presenting with unexplained complaints in family practice is superfluous from a diagnostic point of view. However, many general pracitioners (GPs) order tests immediately. Watchful waiting reduces the number of patients to be tested and the number of false-positive results. The objectives of this study are: to determine the feasibility of watchful waiting compared to immediate test ordering; to determine if a special quality improvement strategy can improve this feasibility; and to determine if watchful waiting leads to testing at a later time.</p> <p>Methods</p> <p>The study is a cluster-randomized clinical trial with three groups, on blood test ordering strategies in patients with unexplained complaints. GPs in group one were instructed to order tests immediately and GPs in group two to apply a watchful waiting approach. GPs in group three received the same instruction as group two, but they were supported by a systematically designed quality improvement strategy. A total of 498 patients with unexplained complaints from 63 practices of Dutch GPs participated. We measured: the percentage of patients for whom tests were ordered and number of tests ordered at the first consultation; performance on the strategy's performance objectives (i.e., ordering fewer tests and specific communication skills); the number of tests ordered after four weeks; and GP and patient characteristics.</p> <p>Results</p> <p>Immediate test ordering proved feasible in 92% of the patients; watchful waiting in 86% and 84%, respectively, for groups two and three. The two watchful waiting groups did not differ significantly in the achievement of any of the performance objectives. Of the patients who returned after four weeks, none from group one and six from the two watchful waiting groups had tests ordered for them.</p> <p>Conclusions</p> <p>Watchful waiting is a feasible approach. It does not lead to testing immediately afterwards. Furthermore, watchful waiting was not improved by the quality improvement strategy.</p> <p>Trial registration</p> <p>Clinical trial registration: <a href="http://www.controlled-trials.com/ISRCTN55755886">ISRCTN55755886</a></p

    Long-range epigenetic silencing at 2q14.2 affects most human colorectal cancers and may have application as a non-invasive biomarker of disease

    Get PDF
    Large chromosomal regions can be suppressed in cancer cells as denoted by hypermethylation of neighbouring CpG islands and downregulation of most genes within the region. We have analysed the extent and prevalence of long-range epigenetic silencing at 2q14.2 (the first and best characterised example of coordinated epigenetic remodelling) and investigated its possible applicability as a non-invasive diagnostic marker of human colorectal cancer using different approaches and biological samples. Hypermethylation of at least one of the CpG islands analysed (EN1, SCTR, INHBB) occurred in most carcinomas (90%), with EN1 methylated in 73 and 40% of carcinomas and adenomas, respectively. Gene suppression was a common phenomenon in all the tumours analysed and affected both methylated and unmethylated genes. Detection of methylated EN1 using bisulfite treatment and melting curve (MC) analysis from stool DNA in patients and controls resulted in a predictive capacity of, 44% sensitivity in positive patients (27% of overall sensitivity) and 97% specificity. We conclude that epigenetic suppression along 2q14.2 is common to most colorectal cancers and the presence of a methylated EN1 CpG island in stool DNA might be used as biomarker of neoplastic disease

    Rapid Transient Production in Plants by Replicating and Non-Replicating Vectors Yields High Quality Functional Anti-HIV Antibody

    Get PDF
    Background: The capacity of plants and plant cells to produce large amounts of recombinant protein has been well established. Due to advantages in terms of speed and yield, attention has recently turned towards the use of transient expression systems, including viral vectors, to produce proteins of pharmaceutical interest in plants. However, the effects of such high level expression from viral vectors and concomitant effects on host cells may affect the quality of the recombinant product. Methodology/Principal Findings: To assess the quality of antibodies transiently expressed to high levels in plants, we have expressed and characterised the human anti-HIV monoclonal antibody, 2G12, using both replicating and non-replicating systems based on deleted versions of Cowpea mosaic virus (CPMV) RNA-2. The highest yield (approximately 100 mg/kg wet weight leaf tissue) of affinity purified 2G12 was obtained when the non-replicating CPMV-HT system was used and the antibody was retained in the endoplasmic reticulum (ER). Glycan analysis by mass-spectrometry showed that the glycosylation pattern was determined exclusively by whether the antibody was retained in the ER and did not depend on whether a replicating or non-replicating system was used. Characterisation of the binding and neutralisation properties of all the purified 2G12 variants from plants showed that these were generally similar to those of the Chinese hamster ovary (CHO) cell-produced 2G12. Conclusions: Overall, the results demonstrate that replicating and non-replicating CPMV-based vectors are able to direct the production of a recombinant IgG similar in activity to the CHO-produced control. Thus, a complex recombinant protein was produced with no apparent effect on its biochemical properties using either high-level expression or viral replication. The speed with which a recombinant pharmaceutical with excellent biochemical characteristics can be produced transiently in plants makes CPMV-based expression vectors an attractive option for biopharmaceutical development and production

    Prognostic impact of MGMT promoter methylation and MGMT and CD133 expression in colorectal adenocarcinoma

    Get PDF
    Background: New biomarkers are needed for the prognosis of advanced colorectal cancer, which remains incurable by conventional treatments. O6-methylguanine DNA methyltransferase (MGMT) methylation and protein expression have been related to colorectal cancer treatment failure and tumor progression. Moreover, the presence in these tumors of cancer stem cells, which are characterized by CD133 expression, has been associated with chemoresistance, radioresistance, metastasis, and local recurrence. The objective of this study was to determine the prognostic value of CD133 and MGMT and their possible interaction in colorectal cancer patients. Methods: MGMT and CD133 expression was analyzed by immunohistochemistry in 123 paraffin-embedded colorectal adenocarcinoma samples, obtaining the percentage staining and intensity. MGMT promoter methylation status was obtained by using bisulfite modification and methylation-specific PCR (MSP). These values were correlated with clinical data, including overall survival (OS), disease-free survival (DFS), tumor stage, and differentiation grade. Results: Low MGMT expression intensity was significantly correlated with shorter OS and was a prognostic factor independently of treatment and histopathological variables. High percentage of CD133 expression was significantly correlated with shorter DFS but was not an independent factor. Patients with low-intensity MGMT expression and ≥50% CD133 expression had the poorest DFS and OS outcomes. Conclusions: Our results support the hypothesis that MGMT expression may be an OS biomarker as useful as tumor stage or differentiation grade and that CD133 expression may be a predictive biomarker of DFS. Thus, MGMT and CD133 may both be useful for determining the prognosis of colorectal cancer patients and to identify those requiring more aggressive adjuvant therapies. Future studies will be necessary to determine its clinical utility.This study was supported by FEDER, Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica (I + D + I), Instituto de Salud Carlos III (FIS) through Project no. PI11/01862 and by the Consejería de Salud de la Junta de Andalucía through Project no. PI-0338. The authors are grateful to the Biobank of the Andalusian Public Healthcare System (Granada, Spain) for invaluable assistance
    corecore