3,090 research outputs found

    Comparative investigation of the coupled-tetrahedra quantum spin systems Cu2Te2O5X2, X=Cl, Br and Cu4Te5O12Cl4

    Full text link
    We present a comparative study of the coupled-tetrahedra quantum spin systems Cu2Te2O5X2, X=Cl, Br (Cu-2252(X)) and the newly synthesized Cu4Te5O12Cl4 (Cu-45124(Cl)) based on ab initio Density Functional Theory calculations. The magnetic behavior of Cu-45124(Cl) with a phase transition to an ordered state at a lower critical temperature Tc_c=13.6K than in Cu-2252(Cl) (Tc_c=18K) can be well understood in terms of the modified interaction paths. We identify the relevant structural changes between the two systems and discuss the hypothetical behavior of the not yet synthesized Cu-45124(Br) with an ab initio relaxed structure using Car-Parrinello Molecular Dynamics.Comment: 2 pages, 1 figure; submitted to Proceedings of M2S-HTSC VIII, Dresden 200

    Peculiar long-range superexchange in Cu2A2O7 (A = P, As, V) as a key element of the microscopic magnetic model

    Full text link
    A microscopic magnetic model for alpha-Cu2P2O7 is evaluated in a combined theoretical and experimental study. Despite a dominant intradimer coupling J1, sizable interdimer couplings enforce long-range magnetic ordering at T_N=27 K. The spin model for alpha-Cu2P2O7 is compared to the models of the isostructural beta-Cu2V2O7 and alpha-Cu2As2O7 systems. As a surprise, coupled dimers in alpha-Cu2P2O7 and alternating chains in alpha-Cu2As2O7 contrast with a honeycomb lattice in beta-Cu2V2O7. We find that the qualitative difference in the coupling regime of these isostructural compounds is governed by the nature of AO4 side groups: d-elements (A = V) hybridize with nearby O atoms forming a Cu-O-A-O-Cu superexchange path, while for p-elements (A = P, As) the superexchange is realized via O-O edges of the tetrahedron. Implications for a broad range of systems are discussed.Comment: 8 pages, 5 figures, 1 table; discussion extende

    Superconductivity in SrFe_(2-x)Co_xAs_2: Internal Doping of the Iron Arsenide Layers

    Full text link
    In the electron doped compounds SrFe_(2-x)Co_xAs_2 superconductivity with T_c up to 20 K is observed for 0.2 < x < 0.4. Results of structure determination, magnetic susceptibility, electrical resistivity, and specific heat are reported. The observation of bulk superconductivity in all thermodynamic properties -- despite strong disorder in the Fe-As layer -- favors an itinerant picture in contrast to the cuprates and renders a p- or d-wave scenario unlikely. DFT calculations find that the substitution of Fe by Co (x > 0.3) leads to the suppression of the magnetic ordering present in SrFe_2As_2 due to a rigid down-shift of the Fe-3d_(x^2-y^2) related band edge in the density of states.Comment: 5 pages, 3 figure

    Tight-binding parameters and exchange integrals of Ba_2Cu_3O_4Cl_2

    Full text link
    Band structure calculations for Ba_2Cu_3O_4Cl_2 within the local density approximation (LDA) are presented. The investigated compound is similar to the antiferromagnetic parent compounds of cuprate superconductors but contains additional Cu_B atoms in the planes. Within the LDA, metallic behavior is found with two bands crossing the Fermi surface (FS). These bands are built mainly from Cu 3d_{x^2-y^2} and O 2p_{x,y} orbitals, and a corresponding tight-binding (TB) model has been parameterized. All orbitals can be subdivided in two sets corresponding to the A- and B-subsystems, respectively, the coupling between which is found to be small. To describe the experimentally observed antiferromagnetic insulating state, we propose an extended Hubbard model with the derived TB parameters and local correlation terms characteristic for cuprates. Using the derived parameter set we calculate the exchange integrals for the Cu_3O_4 plane. The results are in quite reasonable agreement with the experimental values for the isostructural compound Sr_2Cu_3O_4Cl_2.Comment: 5 pages (2 tables included), 4 ps-figure

    Magnetic properties of the low-dimensional spin-1/2 magnet \alpha-Cu_2As_2O_7

    Full text link
    In this work we study the interplay between the crystal structure and magnetism of the pyroarsenate \alpha-Cu_2As_2O_7 by means of magnetization, heat capacity, electron spin resonance and nuclear magnetic resonance measurements as well as density functional theory (DFT) calculations and quantum Monte Carlo (QMC) simulations. The data reveal that the magnetic Cu-O chains in the crystal structure represent a realization of a quasi-one dimensional (1D) coupled alternating spin-1/2 Heisenberg chain model with relevant pathways through non-magnetic AsO_4 tetrahedra. Owing to residual 3D interactions antiferromagnetic long range ordering at T_N\simeq10K takes place. Application of external magnetic field B along the magnetically easy axis induces the transition to a spin-flop phase at B_{SF}~1.7T (2K). The experimental data suggest that substantial quantum spin fluctuations take place at low magnetic fields in the ordered state. DFT calculations confirm the quasi-one-dimensional nature of the spin lattice, with the leading coupling J_1 within the structural dimers. QMC fits to the magnetic susceptibility evaluate J_1=164K, the weaker intrachain coupling J'_1/J_1 = 0.55, and the effective interchain coupling J_{ic1}/J_1 = 0.20.Comment: Accepted for publication in Physical Review

    Structure and magnetism of Cr2BP3O12: Towards the quantum-classical crossover in a spin-3/2 alternating chain

    Full text link
    Magnetic properties of the spin-3/2 Heisenberg system Cr2BP3O12 are investigated by magnetic susceptibility chi(T) measurements, electron spin resonance, neutron diffraction, and density functional theory (DFT) calculations, as well as classical and quantum Monte Carlo (MC) simulations. The broad maximum of chi(T) at 85K and the antiferromagnetic Weiss temperature of 139 K indicate low-dimensional magnetic behavior. Below TN = 28 K, Cr2BP3O12 is antiferromagnetically ordered with the k = 0 propagation vector and an ordered moment of 2.5 muB/Cr. DFT calculations, including DFT+U and hybrid functionals, yield a microscopic model of spin chains with alternating nearest-neighbor couplings J1 and J1' . The chains are coupled by two inequivalent interchain exchanges of similar strength (~1-2 K), but different sign (antiferromagnetic and ferromagnetic). The resulting spin lattice is quasi-one-dimensional and not frustrated. Quantum MC simulations show excellent agreement with the experimental data for the parameters J1 ~= 50 K and J1'/J1 ~= 0.5. Therefore, Cr2BP3O12 is close to the gapless critical point (J1'/J1 = 0.41) of the spin-3/2 bond-alternating Heisenberg chain. The applicability limits of the classical approximation are addressed by quantum and classical MC simulations. Implications for a wide range of low-dimensional S = 3/2 materials are discussed.Comment: Published version: 13 pages, 7 figures, 5 tables + Supplementary informatio

    Carbon isotope effect in superconducting MgCNi_3

    Full text link
    The effect of Carbon isotope substitution on T_c in the intermetallic perovskite superconductor MgCNi_3 is reported. Four independent groups of samples were synthesized and characterized. The average T_c for the Carbon-12 samples was found to be 7.12(2) K and the average T_c for the Carbon-13 samples was found to be 6.82(2) K. The resulting carbon isotope effect coefficient is alfa_C = 0.54(3). This indicates that carbon-based phonons play a critical role in the presence of superconductivity in this compound.Comment: To be published in Phys. Rev. B. 4 pages, 1 figur

    Highly Dispersive Spin Excitations in the Chain Cuprate Li2CuO2

    Full text link
    We present an inelastic neutron scattering investigation of Li2CuO2 detecting the long sought quasi-1D magnetic excitations with a large dispersion along the CuO2-chains studied up to 25 meV. The total dispersion is governed by a surprisingly large ferromagnetic (FM) nearest-neighbor exchange integral J1=-228 K. An anomalous quartic dispersion near the zone center and a pronounced minimum near (0,0.11,0.5) r.l.u. (corresponding to a spiral excitation with a pitch angle about 41 degree point to the vicinity of a 3D FM-spiral critical point. The leading exchange couplings are obtained applying standard linear spin-wave theory. The 2nd neighbor inter-chain interaction suppresses a spiral state and drives the FM in-chain ordering below the Ne'el temperature. The obtained exchange parameters are in agreement with the results for a realistic five-band extended Hubbard Cu 3d O 2p model and L(S)DA+U predictions.Comment: 6 pages, 4 figures, submitted to Europhys. Let

    Fermi-surface topology of the iron pnictide LaFe2_2P2_2

    Full text link
    We report on a comprehensive de Haas--van Alphen (dHvA) study of the iron pnictide LaFe2_2P2_2. Our extensive density-functional band-structure calculations can well explain the measured angular-dependent dHvA frequencies. As salient feature, we observe only one quasi-two-dimensional Fermi-surface sheet, i.e., a hole-like Fermi-surface cylinder around Γ\Gamma, essential for s±s_\pm pairing, is missing. In spite of considerable mass enhancements due to many-body effects, LaFe2_2P2_2 shows no superconductivity. This is likely caused by the absence of any nesting between electron and hole bands.Comment: 5 pages, 4 figure
    • …
    corecore