6,420 research outputs found

    Shear Thickening and Scaling of the Elastic Modulus in a Fractal Colloidal System with Attractive Interactions

    Full text link
    Dilute oil dispersions of fractal carbon black particles with attractive Van der Waals interactions display continuous shear thickening followed by shear thinning at high shear rates. The shear thickening transition occurs at γ˙c≈102−103s−1\dot\gamma_{c}\approx 10^{2}-10^{3}s^{-1} and is driven by hydrodynamic breakup of clusters. Pre-shearing dispersions at shear rates γ˙>γ˙c\dot\gamma>\dot\gamma_{c} produces enhanced-modulus gels where G′∼σpre−shear1.5−2G' \sim \sigma_{pre-shear}^{1.5-2} and is directly proportional to the residual stress in the gel measured at a fixed sample age. The observed data can be accounted for using a simple scaling model for the breakup of fractal clusters under shear stress.Comment: 5 pages, 5 figures; v2: treating low shear rate date separately; edited title; reworked figure

    Terpenoid-Induced Feeding Deterrence and Antennal Response of Honey Bees

    Get PDF
    Multiple interacting stressors negatively affect the survival and productivity of managed honey bee colonies. Pesticides remain a primary concern for beekeepers, as even sublethal exposures can reduce bee immunocompetence, impair navigation, and reduce social communication. Pollinator protection focuses on pesticide application guidelines; however, a more active protection strategy is needed. One possible approach is the use of feeding deterrents that can be delivered as an additive during pesticide application. The goal of this study was to validate a laboratory assay designed to rapidly screen compounds for behavioral changes related to feeding or feeding deterrence. The results of this investigation demonstrated that the synthetic Nasonov pheromone and its terpenoid constituents citral, nerol, and geraniol could alter feeding behavior in a laboratory assay. Additionally, electroantennogram assays revealed that these terpenoids elicited some response in the antennae; however, only a synthetic Nasonov pheromone, citral, and geraniol elicited responses that differed significantly from control and vehicle detections

    Jamming, two-fluid behaviour and 'self-filtration' in concentrated particulate suspensions

    Full text link
    We study the flow of model experimental hard sphere colloidal suspensions at high volume fraction Φ\Phi driven through a constriction by a pressure gradient. Above a particle-size dependent limit Φ0\Phi_0, direct microscopic observations demonstrate jamming and unjamming--conversion of fluid to solid and vice versa--during flow. We show that such a jamming flow produces a reduction in colloid concentration Φx\Phi_{x} downstream of the constriction. We propose that this `self-filtration' effect is the consequence of a combination of jamming of the particulate part of the system and continuing flow of the liquid part, i.e. the solvent, through the pores of the jammed solid. Thus we link the concept of jamming in colloidal and granular media with a 'two-fluid'-like picture of the flow of concentrated suspensions. Results are also discussed in the light of Osborne Reynolds' original experiments on dilation in granular materials.Comment: 4 pages, 3 figure

    Observation of Droplet Size Oscillations in a Two-Phase Fluid under Shear Flow

    Full text link
    Experimental observations of droplet size sustained oscillations are reported in a two-phase flow between a lamellar and a sponge phase. Under shear flow, this system presents two different steady states made of monodisperse multilamellar droplets, separated by a shear-thinning transition. At low and high shear rates, the droplet size results from a balance between surface tension and viscous stress whereas for intermediate shear rates, it becomes a periodic function of time. A possible mechanism for such kind of oscillations is discussed

    The initial stellar mass function from random sampling in hierarchical clouds II: statistical fluctuations and a mass dependence for starbirth positions and times

    Full text link
    Observed variations in the slope of the initial stellar mass function are shown to be consistent with a model in which the protostellar gas is randomly sampled from hierarchical clouds at a rate proportional to the square root of the local density. RMS variations in the IMF slope around the Salpeter value are +/- 0.4 when only 100 stars are observed, and +/- 0.1 when 1000 stars are observed. The hierarchical-sampling model also reproduces the tendency for massive stars to form closer to the center of a cloud, at a time somewhat later than the formation time of the lower mass stars. The assumed density dependence for the star formation rate is shown to be appropriate for turbulence compression, magnetic diffusion, gravitational collapse, and clump or wavepacket coalescence. The low mass flattening in the IMF comes from the inability of gas to form stars below the thermal Jeans mass at typical temperatures and pressures. Consideration of heating and cooling processes indicate why the thermal Jeans mass should be nearly constant in normal environments, and why it might increase in some starburst regions. The steep IMF in the extreme field is not explained by the model, but other origins are suggested.Comment: 21 pages, 8 figures, scheduled for ApJ vol. 515, April 10, 199

    The development of a position-sensitive CZT detector with orthogonal co-planar anode strips

    Get PDF
    We report on the simulation, construction, and performance of prototype CdZnTe imaging detectors with orthogonal coplanar anode strips. These detectors employ a novel electrode geometry with non-collecting anode strips in one dimension and collecting anode pixels, interconnected in rows, in the orthogonal direction. These detectors retain the spectroscopic and detection efficiency advantages of single carrier (electron) sensing devices as well as the principal advantage of conventional strip detectors with orthogonal anode and cathode strips, i.e. an N×N array of imaging pixels are with only 2N electronic channels. Charge signals induced on the various electrodes of a prototype detector with 8×8 unit cells (1×1×5 mm3)are compared to the simulations. Results of position and energy resolution measurements are presented and discussed

    Analog processing of signals from a CZT strip detector with orthogonal coplanar anodes

    Get PDF
    We present the requirements, design, and performance of an analog circuit for processing the non-collecting anode strip signals from a cadmium zinc telluride (CZT) strip detector with orthogonal coplanar anodes. Detector signal simulations and measurements with a prototype are used to define the range of signal characteristics as a function of location of the gamma interaction in the detector. The signals from the non- collecting anode strip electrodes are used to define two of the three spatial coordinates including the depth of interaction, the z dimension. Analog signal processing options are discussed. A circuit to process the signals from the non- collecting anode strips and extract from them the depth of interaction is described. The circuit employs a time-over- threshold (TOT) measurement. The performance of the detector prototype with a preliminary version of this circuit is presented, and future development work is outlined

    Progress in the study of CdZnTe strip detectors

    Get PDF
    We report new performance measurements and computer simulations of a sub-millimeter pitch CdZnTe strip detector under study as a prototype imaging spectrometer for astronomical x-ray and gamma-ray observations. The prototype is 1.5 mm thick with 375 micron strip pitch in both the x and y dimensions. Previously reported work included demonstrations of half-pitch spatial resolution (approximately 190 microns) and good energy resolution and spectral uniformity. Strip detector efficiency measurements have also been presented. A model that includes the photon interaction, carrier transport and the electronics was developed that qualitatively reproduced the measurements. The new studies include measurements of the CdZnTe transport properties for this prototype in an effort to resolve quantitative discrepancies between the measurements and the simulations. Measurements of charge signals produced by laser pulses and (alpha) -rays are used to determine these transport properties. These are then used in the model to predict gamma-ray efficiencies that are compared with the data. The imaging performance of the detector is studied by scanned laser and gamma beam spot measurements. The results support the model\u27s prediction of nearly linear sharing of the charge for interactions occurring in the region between electrodes. The potential for strip detectors with spatial resolution much finer than the strip pitch is demonstrated. A new design scheme for strip detectors is shortly discussed

    Protostellar Collapse with Various Metallicities

    Get PDF
    The thermal and chemical evolution of gravitationally collapsing protostellar clouds is investigated, focusing attention on their dependence on metallicity. Calculations are carried out for a range of metallicities spanning the local interstellar value to zero. During the time when clouds are transparent to continuous radiation, the temperatures are higher for those with lower metallicity, reflecting lower radiative ability. However, once the clouds become opaque, in the course of the adiabatic contraction of the transient cores, their evolutionary trajectories in the density-temperature plane converge to a unique curve that is determined by only physical constants. The trajectories coincide with each other thereafter. Consequently, the size of the stellar core at the formation is the same regardless of the gas composition of the parent cloud.Comment: 30 pages. The Astrophysical Journal, 533, in pres

    Sensitivity curves for spaceborne gravitational wave interferometers

    Get PDF
    To determine whether particular sources of gravitational radiation will be detectable by a specific gravitational wave detector, it is necessary to know the sensitivity limits of the instrument. These instrumental sensitivities are often depicted (after averaging over source position and polarization) by graphing the minimal values of the gravitational wave amplitude detectable by the instrument versus the frequency of the gravitational wave. This paper describes in detail how to compute such a sensitivity curve given a set of specifications for a spaceborne laser interferometer gravitational wave observatory. Minor errors in the prior literature are corrected, and the first (mostly) analytic calculation of the gravitational wave transfer function is presented. Example sensitivity curve calculations are presented for the proposed LISA interferometer. We find that previous treatments of LISA have underestimated its sensitivity by a factor of 3\sqrt{3}.Comment: 27 pages + 5 figures, REVTeX, accepted for publication in Phys Rev D; Update reflects referees comments, figure 3 clarified, figure 5 corrected for LISA baselin
    • …
    corecore