187 research outputs found

    Validation of the Mind Excessively Wandering Scale and the Relationship of Mind Wandering to Impairment in Adult ADHD.

    Get PDF
    OBJECTIVE: This study investigates excessive mind wandering (MW) in adult ADHD using a new scale: the Mind Excessively Wandering Scale (MEWS). METHOD: Data from two studies of adult ADHD was used in assessing the psychometric properties of the MEWS. Case-control differences in MW, the association with ADHD symptoms, and the contribution to functional impairment were investigated. RESULTS: The MEWS functioned well as a brief measure of excessive MW in adult ADHD, showing good internal consistency (α > .9), and high sensitivity (.9) and specificity (.9) for the ADHD diagnosis, comparable with that of existing ADHD symptom rating scales. Elevated levels of MW were found in adults with ADHD, which contributed to impairment independently of core ADHD symptom dimensions. CONCLUSION: Findings suggest excessive MW is a common co-occurring feature of adult ADHD that has specific implications for the functional impairments experienced. The MEWS has potential utility as a screening tool in clinical practice to assist diagnostic assessment

    Training Modifications in Endurance Athletes due to COVID-19 Restrictions

    Get PDF
    The COVID-19 pandemic created a situation that abruptly altered the life of nearly every individual, forcing them to adjust their daily habits. Adults who regularly engaged in daily physical activity, either as recreational, collegiate, or professional athletes prior to lockdowns had to subsequently adapt and change their training regimens. PURPOSE: To determine which characteristics (age, sex, education level, socioeconomic status, primary endurance sport, whether the athlete is being coached or following a training program, and prior competition medaling) of recreational, collegiate, and professional endurance athletes were associated with training changes due to COVID-19 safety restrictions. METHODS: A cross-sectional study design was used for this study. Personal and training related descriptive statistics were collected using a Qualtrics survey that was distributed to endurance athletes around the world from June 2020 – February 2021. Significant differences between athlete characteristics and change in training status were assessed using a Chi-squared test (significance pRESULTS: Approximately 2 out of every 3 (66.2%) of the 331 endurance athletes, 38.8±14.0y, changed their training due to restrictions. Significant group differences were found for age, sex, current collegiate athlete status, prior coaching status, prior use of a training program, and based on athlete primary sport compared to the whole sample. Athletes aged 18-30y changed their training at a higher portion (74.6%), while those 31-40y (56%) changed their training a lower portion. A significantly higher portion of female athletes changed their training compared to males (72.8% and 60.0%, respectively). A majority of collegiate athletes (83%), athletes who have previously worked with a coach (70.8%), athletes who have followed a training program previously (72.4%) changed their training. A significantly smaller proportion of athletes who chose running as their primary sport (55%) changed their training and a significantly larger portion of those who chose triathlon (82.1%) changed their training due to pandemic-related safety restrictions. CONCLUSION: The majority of athletes changed their training with COVID-19 safety restrictions, with significant differences based on personal and training characteristics. This data can be of use to safety policy makers, athletes, and coaches to consider for training approach and return to sport. Analysis of factors that allowed athletes to maintain their training and understanding the changes in athlete training can help minimize or prevent the effects of detraining for a greater portion of athletes

    Connexin26 mediates CO2-dependent regulation of breathing via glial cells of the medulla oblongata

    Get PDF
    Breathing is highly sensitive to the PCO2 of arterial blood. Although CO2 is detected via the proxy of pH, CO2 acting directly via Cx26 may also contribute to the regulation of breathing. Here we exploit our knowledge of the structural motif of CO2-binding to Cx26 to devise a dominant negative subunit (Cx26DN) that removes the CO2-sensitivity from endogenously expressed wild type Cx26. Expression of Cx26DN in glial cells of a circumscribed region of the mouse medulla - the caudal parapyramidal area – reduced the adaptive change in tidal volume and minute ventilation by approximately 30% at 6% inspired CO2. As central chemosensors mediate about 70% of the total response to hypercapnia, CO2-sensing via Cx26 in the caudal parapyramidal area contributed about 45% of the centrally-mediated ventilatory response to CO2. Our data unequivocally link the direct sensing of CO2 to the chemosensory control of breathing and demonstrates that CO2-binding to Cx26 is a key transduction step in this fundamental process

    Differential CpG DNA methylation in peripheral naïve CD4+ T-cells in early rheumatoid arthritis patients

    Get PDF
    Background: The genetic risk associated with rheumatoid arthritis (RA) includes genes regulating DNA methylation, one of the hallmarks of epigenetic re-programing, as well as many T-cell genes, with a strong MHC association, pointing to immunogenetic mechanisms as disease triggers leading to chronicity. The aim of our study was to explore DNA methylation in early, drug-naïve RA patients, towards a better understanding of early events in pathogenesis. Result: Monocytes, naïve and memory CD4+ T-cells were sorted from 6 healthy controls and 10 RA patients. DNA methylation was assessed using a genome-wide Illumina 450K CpG promoter array. Differential methylation was confirmed using bisulfite sequencing for a specific gene promoter, ELISA for several cytokines and flow cytometry for cell surface markers. Differentially methylated (DM) CpGs were observed in 1047 genes in naïve CD4+ T-cells, 913 in memory cells and was minimal in monocytes with only 177 genes. Naive CD4+ T-cells were further investigated as presenting differential methylation in the promoter of > 500 genes associated with several disease-relevant pathways, including many cytokines and their receptors. We confirmed hypomethylation of a region of the TNF-alpha gene in early RA and differential expression of 3 cytokines (IL21, IL34 and RANKL). Using a bioinformatics package (DMRcate) and an in-house analysis based on differences in β values, we established lists of DM genes between health and RA. Publicly available gene expression data were interrogated to confirm differential expression of over 70 DM genes. The lists of DM genes were further investigated based on a functional relationship database analysis, which pointed to an IL6/JAK1/STAT3 node, related to TNF-signalling and engagement in Th17 cell differentiation amongst many pathways. Five DM genes for cell surface markers (CD4, IL6R, IL2RA/CD25, CD62L, CXCR4) were investigated towards identifying subpopulations of CD4+ T-cells undergoing these modifications and pointed to a subset of naïve T-cells, with high levels of CD4, IL2R, and CXCR4, but reduction and loss of IL6R and CD62L, respectively. Conclusion: Our data provided novel conceptual advances in the understanding of early RA pathogenesis, with implications for early treatment and prevention

    Protein interactions in Xenopus germ plasm RNP particles

    Get PDF
    Hermes is an RNA-binding protein that we have previously reported to be found in the ribonucleoprotein (RNP) particles of Xenopus germ plasm, where it is associated with various RNAs, including that encoding the germ line determinant Nanos1. To further define the composition of these RNPs, we performed a screen for Hermes-binding partners using the yeast two-hybrid system. We have identified and validated four proteins that interact with Hermes in germ plasm: two isoforms of Xvelo1 (a homologue of zebrafish Bucky ball) and Rbm24b and Rbm42b, both RNA-binding proteins containing the RRM motif. GFP-Xvelo fusion proteins and their endogenous counterparts, identified with antisera, were found to localize with Hermes in the germ plasm particles of large oocytes and eggs. Only the larger Xvelo isoform was naturally found in the Balbiani body of previtellogenic oocytes. Bimolecular fluorescence complementation (BiFC) experiments confirmed that Hermes and the Xvelo variants interact in germ plasm, as do Rbm24b and 42b. Depletion of the shorter Xvelo variant with antisense oligonucleotides caused a decrease in the size of germ plasm aggregates and loosening of associated mitochondria from these structures. This suggests that the short Xvelo variant, or less likely its RNA, has a role in organizing and maintaining the integrity of germ plasm in Xenopus oocytes. While GFP fusion proteins for Rbm24b and 42b did not localize into germ plasm as specifically as Hermes or Xvelo, BiFC analysis indicated that both interact with Hermes in germ plasm RNPs. They are very stable in the face of RNA depletion, but additive effects of combinations of antisense oligos suggest they may have a role in germ plasm structure and may influence the ability of Hermes protein to effectively enter RNP particles

    MiR-155 has a protective role in the development of non-alcoholic hepatosteatosis in mice

    Get PDF
    Hepatic steatosis is a global epidemic that is thought to contribute to the pathogenesis of type 2 diabetes. MicroRNAs (miRs) are regulators that can functionally integrate a range of metabolic and inflammatory pathways in liver. We aimed to investigate the functional role of miR-155 in hepatic steatosis. Male C57BL/6 wild-type (WT) and miR-155−/− mice were fed either normal chow or high fat diet (HFD) for 6 months then lipid levels, metabolic and inflammatory parameters were assessed in livers and serum of the mice. Mice lacking endogenous miR-155 that were fed HFD for 6 months developed increased hepatic steatosis compared to WT controls. This was associated with increased liver weight and serum VLDL/LDL cholesterol and alanine transaminase (ALT) levels, as well as increased hepatic expression of genes involved in glucose regulation (Pck1, Cebpa), fatty acid uptake (Cd36) and lipid metabolism (Fasn, Fabp4, Lpl, Abcd2, Pla2g7). Using miRNA target prediction algorithms and the microarray transcriptomic profile of miR-155−/− livers, we identified and validated that Nr1h3 (LXRα) as a direct miR-155 target gene that is potentially responsible for the liver phenotype of miR-155−/− mice. Together these data indicate that miR-155 plays a pivotal role regulating lipid metabolism in liver and that its deregulation may lead to hepatic steatosis in patients with diabetes

    Localisation of RNAs into the germ plasm of vitellogenic xenopus oocytes

    Get PDF
    We have studied the localisation of mRNAs in full-grown Xenopus laevis oocytes by injecting fluorescent RNAs, followed by confocal microscopy of the oocyte cortex. Concentrating on RNA encoding the Xenopus Nanos homologue, nanos1 (formerly Xcat2), we find that it consistently localised into aggregated germ plasm ribonucleoprotein (RNP) particles, independently of cytoskeletal integrity. This implies that a diffusion/entrapment-mediated mechanism is active, as previously reported for previtellogenic oocytes. Sometimes this was accompanied by localisation into scattered particles of the “late”, Vg1/VegT pathway; occasionally only late pathway localisation was seen. The Xpat RNA behaved in an identical fashion and for neither RNA was the localisation changed by any culture conditions tested. The identity of the labelled RNP aggregates as definitive germ plasm was confirmed by their inclusion of abundant mitochondria and co-localisation with the germ plasm protein Hermes. Further, the nanos1/Hermes RNP particles are interspersed with those containing the germ plasm protein Xpat. These aggregates may be followed into the germ plasm of unfertilized eggs, but with a notable reduction in its quantity, both in terms of injected molecules and endogenous structures. Our results conflict with previous reports that there is no RNA localisation in large oocytes, and that during mid-oogenesis even germ plasm RNAs localise exclusively by the late pathway. We find that in mid oogenesis nanos1 RNA also localises to germ plasm but also by the late pathway. Late pathway RNAs, Vg1 and VegT, also may localise into germ plasm. Our results support the view that mechanistically the two modes of localisation are extremely similar, and that in an injection experiment RNAs might utilise either pathway, the distinction in fates being very subtle and subject to variation. We discuss these results in relation to their biological significance and the results of others

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty

    Validation of the mind excessively wandering scale and the relationship of mind wandering to impairment in adult ADHD

    Get PDF
    Objective: This study investigates excessive mind wandering (MW) in adult ADHD using a new scale: the Mind Excessively Wandering Scale (MEWS). Method: Data from two studies of adult ADHD was used in assessing the psychometric properties of the MEWS. Case-control differences in MW, the association with ADHD symptoms, and the contribution to functional impairment were investigated. Results: The MEWS functioned well as a brief measure of excessive MW in adult ADHD, showing good internal consistency (α > .9), and high sensitivity (.9) and specificity (.9) for the ADHD diagnosis, comparable with that of existing ADHD symptom rating scales. Elevated levels of MW were found in adults with ADHD, which contributed to impairment independently of core ADHD symptom dimensions. Conclusion: Findings suggest excessive MW is a common co-occurring feature of adult ADHD that has specific implications for the functional impairments experienced. The MEWS has potential utility as a screening tool in clinical practice to assist diagnostic assessment
    corecore