58 research outputs found

    Unravelling interactions between salt marsh evolution and sedimentary processes in the Wadden Sea (southeastern North Sea)

    Get PDF
    Salt marshes in the Wadden Sea constitute about 20% of all salt marshes along European coasts. They are of immense importance for coastal protection reasons and as habitat for coastal plant, bird, and invertebrate species. The Wadden Sea is a coastal sedimentary ecosystem in the southeastern North Sea. Besides salt marshes, it is composed of tidal flats, high sands, and sandy shoals, dissected by (sub)tidal channels and located behind barrier islands. Accelerated global sea-level rise (SLR) and changes in storm climate have been identified as possible threats for the persistence of the Wadden Sea ecosystem including its salt marshes. Moreover, it is known that the amount and composition of the sediment available for salt marshes are the most important parameters influencing their ability to adapt to current and future SLR. Assessing these parameters requires a thorough understanding of the sedimentary system of the salt marshes and the adjacent tidal basins. In the present review, we investigate and unravel the interactions of sedimentary processes in the Wadden Sea with the processes taking place on the salt marshes. We identify the most crucial processes and interactions influencing the morphological development of salt marshes in the Wadden Sea. A conceptual model is proposed, intended as a framework for improved understanding of salt marsh development and for incorporation into new salt marsh models. The proposed model may also be applicable to regions other than the Wadden Sea

    Microbial life in volcanic lakes

    Get PDF
    Lakes in the craters of active volcanoes and their related streams are often characterised by conditions considered extreme for life, such as high temperatures, low pH and very high concentrations of dissolved metals and minerals. Such lakes tend to be transient features whose geochemistry can change markedly over short time periods. They might also vanish completely during eruption episodes or by drainage through the crater wall or floor. These lakes and their effluent streams and springs host taxonomically and metabolically diverse microorganisms belonging in the Archaea, Bacteria, and Eucarya. In volcanic ecosystems the relation between geosphere and biosphere is particularly tight; microbial community diversity is shaped by the geochemical parameters of the lake, and by the activities of microbes interacting with the water and sediments. Sampling these lakes is often challenging, and few have even been sampled once, especially in a microbiological context. Developments in high-throughput cultivation procedures, single-cell selection techniques, and massive increases in DNA sequencing throughput, should encourage efforts to define which microbes inhabit these features and how they interact with each other and the volcano. The study of microbial communities in volcanic lake systems sheds light on possible origins of life on early Earth. Other potential outcomes include the development of microbial inocula to promote plant growth in altered or degraded soils, bioremediation of contaminated waste or land, and the discovery of enzymes or other proteins industrial or medical applications

    Development of a thin section device for space exploration: Rock cutting mechanism

    No full text
    We have developed a rock cutting mechanism for in situ planetary exploration based on abrasive diamond impregnated wire. Performance characteristics of the rock cutter, including cutting rate on several rock types, cutting surface lifetime, and cut rock surface finish are presented. The rock cutter was developed as part of a broader effort to develop an in situ automated rock thin section (IS-ARTS) instrument. The objective of IS-ARTS was to develop an instrument capable of producing petrographic rock thin sections on a planetary science spacecraft. The rock cutting mechanism may also be useful to other planetary science missions with in situ instruments in which sub-sampling and rock surface preparation are necessary. © 2012 COSPAR. Published by Elsevier Ltd. All rights reserved
    • …
    corecore