

Progress in Physical Geography

Unravelling interactions between salt marsh evolution and sedimentary processes in the Wadden Sea (south-eastern North Sea)

Journal:	Progress in Physical Geography
Manuscript ID:	PPG-13-060.R3
Manuscript Type:	Main Article
Keywords:	Salt marshes, Wadden Sea, Sea level rise, Sediment dynamics, Tidal flats, Modelling
Abstract:	Salt marshes in the Wadden Sea constitute about 20% of all salt marshes along European coasts. They are of immense importance for coastal protection reasons and as habitat for coastal plant, bird, and invertebrate species. The Wadden Sea is a coastal sedimentary ecosystem in the south- eastern North Sea. Besides salt marshes, it is composed of tidal flats, high sands, and sandy shoals, dissected by (sub)tidal channels and located behind barrier islands. Accelerated global sea-level rise (SLR) and changes in storm climate have been identified as possible threats for the persistence of the Wadden Sea ecosystem including its salt marshes. Moreover, it is known that the amount and composition of the sediment available for salt marshes are the most important parameters influencing their ability to adapt to current and future SLR. Assessing these parameters requires a thorough understanding of the sedimentary system of the salt marshes and the adjacent tidal basins. In the present review, we investigate and unravel the interactions of sedimentary processes in the Wadden Sea with the processes taking place on salt marshes. We identify the most crucial processes and interactions influencing the morphological development of salt marshes in the Wadden Sea. A conceptual model is proposed, intended as a framework for improved understanding of salt marsh development and for incorporation into new salt marsh models. The proposed model may also be applicable to regions other than the Wadden Sea.

SCHOLARONE[™] Manuscripts

Review Article

1 Unravelling interactions between salt marsh evolution and sedimentary processes in

- 2 the Wadden Sea (south-eastern North Sea)

4 Abstract

Salt marshes in the Wadden Sea constitute about 20% of all salt marshes along European coasts. They are of immense importance for coastal protection reasons and as habitat for coastal plant, bird, and invertebrate species. The Wadden Sea is a coastal sedimentary ecosystem in the south-eastern North Sea. Besides salt marshes, it is composed of tidal flats, high sands, and sandy shoals, dissected by (sub)tidal channels and located behind barrier islands. Accelerated global sea-level rise (SLR) and changes in storm climate have been identified as possible threats for the persistence of the Wadden Sea ecosystem including its salt marshes. Moreover, it is known that the amount and composition of the sediment available for salt marshes are the most important parameters influencing their ability to adapt to current and future SLR. Assessing these parameters requires a thorough understanding of the sedimentary system of the salt marshes and the adjacent tidal basins. In the present review, we investigate and unravel the interactions of sedimentary processes in the Wadden Sea with the processes taking place on salt marshes. We identify the most crucial processes and interactions influencing the morphological development of salt marshes in the Wadden Sea. A conceptual model is proposed, intended as a framework for improved understanding of

12 identif
13 salt ma
14 availab
15 to curr
16 the sec
17 review
18 Sea with
19 and into
20 Sea. A

21	salt marsh development and for incorporation into new salt marsh models. The proposed
22	model may also be applicable to regions other than the Wadden Sea.
23	
24	Keywords
25	
26	Salt marshes Wadden Sea, sea level rise, sediment dynamics, tidal flats, modelling
20	
27	L Introduction
20	
29	The Wadden Sea occurrent stratches over 450 km along the coast of The Netherlands
50	Cormony, and Depmark and is characterized by a comidiumal tidal regime (Fig. 1) (CWCC
31	Germany, and Denmark and is characterized by a semidiumar tidal regime (Fig. 1) (CWSS,
32	2008). It is regarded as one of the world's largest unbroken wetland systems, consisting of
33	barrier islands, sandy shoals, tidal sand and mud flats, (sub)tidal channels, and coastal salt
34	marshes. The salt marshes are located at the interface between the tidal flats and the upland
35	and cover a total area of about 400 km ² . Nearly 50% of them are foreland marshes, in most
36	cases artificially created by the implementation of brushwood groynes in the tidal flats, and
37	located in front of the dikes along the mainland coast (Esselink et al., 2009). In contrast, most
38	natural salt marshes are found at the leeward side of the barrier islands (back-barrier marshes)
39	(Bakker et al., 2005).
40	Salt marshes in the Wadden Sea are considered important for coastal protection (Möller, 2006;
41	Möller et al., 1999) and as habitat for coastal birds, invertebrates, and specialized plant species
	2

1	
2	
3	
4	
5	
5	
6	
7	
8	
q	
10	
10	
11	
12	
13	
1/	
45	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
21	
24	
25	
26	
27	
20	
20	
29	
30	
31	
32	
32	
33	
34	
35	
36	
27	
37	
38	
39	
40	
10	
41	
42	
43	
44	
45	
40	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
54	
55	
56	
57	
58	
50	
59	
60	

55

42 (Niedringhaus et al., 2008; van der Maarel and van der Maarel-Versluys, 1996). In addition, salt 43 marshes have an important filter function with regard to nutrients and pollutants (e.g. heavy 44 metals) (Reise et al., 2010) and act as a sink for fine-grained sediments (Andersen and Pejrup, 45 2001; Pejrup et al., 1997). 46 Growth and survival of salt marshes are primarily controlled by hydromorphological 47 parameters such as inundation frequency and sediment availability (Pethick, 1981; van Wijnen 48 and Bakker, 2001) as well as the influence of vegetation on the sedimentation process itself 49 (Fagherazzi et al., 2012). Therefore, salt marshes are highly susceptible to changes of the 50 hydromorphological regime, triggered, for example, by a rising sea level and/or increased 51 storm activity (Morris et al., 2002; Mudd et al., 2004; Reed, 1995). Various modelling studies 52 have shown that salt marshes may be able to accrete with roughly the same rate as sea level

rises, if sediment availability is sufficient (French, 1993; D'Alpaos et al., 2011; Kirwan et al.,

54 2010). However, as a consequence of recent climate change (including sea level rise (SLR)) and

various anthropogenic pressures, salt marshes have been lost and/or are expected to be lost in

56 the future due to drowning and/or lateral erosion in many parts of the world (Duarte et al.,

57 2008; McFadden et al., 2007; Nicholls et al., 1999). In contrast to this global trend, salt marsh

areas in the Wadden Sea have remained stable or have been expanding since the end of

59 embanking about 25 years ago (Esselink et al., 2009; Wolff et al., 2010; Stock, 1998). Partly,

60 this trend is due to the artificial creation of foreland marshes (Esselink et al., 2009). For the 21st

61 century and beyond, accelerated SLR has been identified as a major threat for the salt marshes

62 in the Wadden Sea, since not enough sediment may be available for their vertical growth (e.g.

63	Andersen et al., 2011; van Wijnen and Bakker, 2001) and since artificial salt marsh creation is
64	reduced for nature protection reasons (Esselink et al., 2009).
65	For the future ability of the Wadden Sea salt marshes to adapt to SLR, it is assumed that the
66	local availability of fine-grained sediments is the most important variable (Andersen et al.,
67	2011; Schuerch et al., 2013). This implies that understanding the import of fine-grained
68	sediments into the tidal basins as well as the sediment transport processes on the tidal flats
69	and the salt marshes is crucial for estimating the future development of these marshes.
70	However, the interactions between the sedimentary processes of the tidal basins, tidal flats,
71	and salt marshes are insufficiently studied and have not yet been incorporated into predictions
72	for future salt marsh development.
73	With this review, we aim to identify knowledge gaps regarding the main processes that control
74	morphodynamics within the tidal basin – tidal flat – salt marsh continuum and suggest how
75	these gaps can be bridged in salt marsh modelling. For this purpose we have developed a
76	conceptual model that helps to improve the formulation of salt marsh models that predict the
77	ability of coastal salt marshes to adapt to future SLR. Rather than looking at salt marshes as an
78	isolated landscape feature, a more comprehensive and broader-scale approach is taken for
79	highlighting the role of salt marshes in the surrounding sedimentary system. The Wadden Sea
80	ecosystem, in this context, serves as a case study, since it can be considered representative of
81	many similar coastal systems around the world, and extensive research with respect to its
82	morphological functioning has been conducted (Wang et al., 2012).
83	

85

II Methodology

1

2
3
4
5
6
0
1
8
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
26
27
28
29
30
21
20
32
33
34
35
36
37
38
39
40
41
42
43
11
44 1E
40
40
4/
48
49
50
51
52
53
54
55
56
57
57 E0
58
59

60

86 In the following sections, we outline the sedimentary processes and interactions relevant for 87 the morphological development of salt marshes in the Wadden Sea. Where possible, existing 88 process knowledge is reviewed based on studies directly referring to the Wadden Sea 89 ecosystem. However, for site-independent processes driving the Wadden Sea sedimentary 90 system, a more general review approach is taken referring to the most important literature in 91 the field. 92 We start with a synthesis of the processes governing the salt marsh itself and the identification 93 of knowledge gaps. We continue with a description of the existing and missing knowledge on 94 tidal flat dynamics and the processes taking place in the tidal basin. The importance of all these 95 processes for the morphological development of salt marshes in the Wadden Sea is thereby 96 highlighted. In the end, we integrate this knowledge in a conceptual model that will help salt 97 marsh modellers to expand their models and improve the model performance with respect to 98 short- and long-term temporal as well as spatial variations in salt marsh development. 99 100 **III** Morphodynamics of coastal salt marshes 101

102 1 Vertical salt marsh development

104	a Processes of vertical salt marsh growth. Driven by regular tidal to episodic wind induced
105	inundations, the growth of salt marshes is controlled by a continuous input of mainly mineral
106	(and much less organic) sediment brought onto the salt marsh by the flooding water. Such
107	allochthonous accretion is strongly related to the relative elevation of the salt marsh within
108	the tidal frame, the inundation frequency, and the amount of external sediment supplied by
109	the flooding water (Kirwan et al., 2010; French, 1993; van Wijnen and Bakker, 2001). Besides
110	the allochthonous accretion, salt marshes accrete as a result of autochthonous growth, the
111	accumulation of aboveground and belowground biomass including the growth of benthic
112	microflora (e.g. cyanobacteria and eucaryotic algae, such as diatoms and Vaucheria) (Chmura,
113	2013; Sullivan and Currin, 2002).
114	For allochthonous marsh accretion, vegetation acts as a facilitating ecosystem-engineer. It
115	reduces lateral and vertical marsh erosion and stabilizes the soil through rooting and other
116	modifications of the soil properties (Feagin et al., 2009; Howes et al., 2010). Moreover, the
117	aboveground plant structures reduce flow velocities and turbulence, enhancing the deposition
118	of mineral and organic sediment particles by trapping suspended sediments directly and by
119	increasing particle settling velocities in densely vegetated environments (Fig. 2) (Leonard and
120	Croft, 2006; Mudd et al., 2010; Nepf, 1999; Stumpf, 1983). Spatial variability in the
121	depositional pattern is introduced by the presence of vegetation as suspended sediment
122	concentrations of the flooding water are depleted while travelling over the vegetated marsh
123	surface (Christiansen et al., 2000; French and Spencer, 1993; Temmerman et al., 2003a).
124	Depending on the marsh elevation, different vegetation types and densities establish on the

2 3 4 5 6 7	
8 9	125
10 11	126
12 13	127
14 15 16	128
17 18	129
19 20	130
21 22	131
23 24	132
25 26	133
27 28 20	134
29 30 31	135
32 33	136
34 35	137
36 37	138
38 39	139
40 41	140
42 43 44	141
45 46	142
47 48	143
49 50	144
51 52	145
53 54 55 56 57 58 59 60	

marsh that vary with respect to their physical plant characteristics (e.g. stem diameter and stiffness, leaf area, vertical biomass distribution) and their potential to reduce flow velocities and turbulences as well as their ability of directly capturing sediments (Neumeier and Amos, 2006; Mudd et al., 2010; Marani et al., 2013). Additionally, sedimentation rates over vegetated marsh surfaces vary spatially depending on the ratio of inundation height to vegetation height (Temmerman et al., 2005) with smaller spatial variability, when the marsh vegetation is completely submerged during an inundation event (Temmerman et al., 2005). Marsh growth via vertical accretion is counteracted by autocompaction (Allen, 2000). This process is generally assumed to be negligible on allochthonous marshes, but highly important in autochthonous marshes (Cahoon et al., 1995; Allen, 2000). However, Bartholdy et al. (2010) find autocompaction to be of major importance for a barrier-connected mineralogenic salt marsh in the Danish Wadden Sea. Besides autocompaction, the salt marsh surface may also be lowered by external factors, such as tectonic or human-induced soil subsidence (e.g. de Vlas, 2005). If total marsh accretion exceeds the combined effect of soil subsidence, autocompaction, and eustatic SLR, the marsh elevation increases relative to mean sea level (MSL). Inundation frequency then decreases and sedimentation rates slow down when vegetation succession proceeds from pioneer marsh over low marsh to high marsh vegetation (Adam, 1990; Bockelmann et al., 2002; Leendertse et al., 1997; Olff et al., 1997). b Vertical salt marsh growth under the influence of SLR. Salt marsh growth usually exists in a quasi dynamic equilibrium with SLR (Allen, 1995; Allen, 2000; Morris et al., 2002). More

146	frequent and higher inundation events enhance mineral sedimentation when sea level rises. A
147	parallel increase of biomass is observed on the salt marsh up to a critical SLR rate (Morris et al.,
148	2002). Given sufficient sediment supply, most marshes are likely to survive SLR (Kirwan and
149	Temmerman, 2009). If sediment supply decreases, the salt marsh may not be able to grow fast
150	enough (Andersen et al., 2011), leading to regressive succession (Warren and Niering, 1993) or
151	drowning of the marsh (Fig. 3) (D'Alpaos et al., 2011; Kirwan et al., 2010). In the Danish
152	Wadden Sea, Andersen et al. (2011) found indications for a decreasing sediment supply, either
153	caused by a long-term regime shift or by short term variations in the sedimentary system of
154	the Wadden Sea. Also in other parts of the Wadden Sea, trends of regressive succession are
155	currently observed (Leendertse et al., 1997; Schröder et al., 2002; Stock, 2011), although this
156	may partly be attributed to grazing activities (Bakker, 1985; Stock, 2011; Nolte et al., 2013).
157	Apart from local sediment supply, the survival of salt marshes is crucially dependent on tidal
158	range (Fig. 3) (Harrison and Bloom, 1977; French, 1993; D'Alpaos et al., 2011; Kirwan et al.,
159	2010). In macro-tidal environments tidal currents are stronger, thereby enhancing sediment
160	resuspension in the tidal basin and on tidal flats in particular, resulting in a higher sediment
161	supply for the salt marsh (Temmerman et al., 2004a). Additionally, a large tidal range increases
162	the ability of salt marshes to cope with SLR by allowing the marsh to cover a wider elevational
163	range, thus surviving longer even if marsh elevation decreases relative to MSL (Kirwan and
164	Guntenspergen, 2010).
165	c Vertical salt marsh growth and storm activity. Apart from SLR and the prevailing tidal regime
166	the occurrence of strong onshore wind and storm events crucially affects marsh development

1 2	
3 ⊿	
5	
7	
8 9	
10 11	
12 13	
14 15	
16 17	
18 19	
20 21	
22 23	
24 25	
26 27	
28 29	
30 31	
32 33	
33 34	
36 27	
37 38	
39 40	
41 42	
43 44	
45 46	
47 48	
49 50	
51 52	
53 54	
55 56	
57 58	
59 60	

167	(Bartholdy et al., 2004; Schuerch et al., 2013). Positive effects of storm activity on vertical salt
168	marsh accretion rates are increased inundation frequencies and heights as well as increased
169	sediment supply (Stumpf, 1983; Bartholdy et al., 2004; Bellucci et al., 2007; Schuerch et al.,
170	2012). Sedimentation rates are generally assumed to gradually increase with higher inundation
171	depths, since sediment concentrations of the flooding water and the absolute amount of
172	sediment transported onto the marsh platform are higher (Temmerman et al., 2003b).
173	Nevertheless, it appears that largest sedimentation rates are associated with time periods in
174	which many strong wind or weak storm events occur, while the occurrence of extreme storm
175	events seems to be less important (Bartholdy et al., 2004). This may be explained simply by the
176	frequency of inundation events, but also by the high probability of inundations overtopping
177	the vegetation canopy. This is, in turn, associated with higher depth-averaged flow velocities, a
178	process, which has hardly been investigated, but is discussed in more detail later.
179	Consequently, sedimentation rates increase more slowly with increasing inundation height as
180	soon as the vegetation canopy is completely submerged during inundation (Schuerch et al.,
181	2012; Neumeier and Amos, 2006).
182	Generally, micro-tidal marshes have been shown to benefit more from increased storm activity
183	than macro-tidal marshes, since sediment dynamics in micro-tidal marshes are rather
184	controlled by wind induced processes than in macro-tidal marshes, which are more governed
185	by tidal currents (Stumpf, 1983; Kolker et al., 2009). Additionally, the effect of storm surges

186 with regard to inundation heights and frequencies as well as increased sediment supply tends

187 to be relatively more important in micro-tidal marshes than in macro-tidal marshes (Stumpf,

188 1983).

- 190 2 Lateral marsh dynamics

a Physical drivers for lateral marsh erosion. Besides vertical growth, salt marsh development is subject to lateral marsh dynamics. Lateral salt marsh erosion and expansion are suggested to be part of a cyclic behaviour, where an erosive phase of salt marsh retreat is followed or accompanied by the re-establishment of pioneer vegetation in front of the marsh platform (Yapp et al., 1917; Redfield, 1972; Esselink et al., 2009; van de Koppel et al., 2005; Singh Chauhan, 2009). Salt marshes may emerge at upper tidal flats when and where sediment accretion outpaces SLR with inundation frequency and bottom shear stress gradually decreasing. The developing vegetation stabilizes the sediment and further enhances sediment accretion (Fig. 2) (Orson et al, 1985; van de Koppel et al., 2005). In case sediment supply is not sufficient for the tidal flat to adapt to SLR (e.g. due to decreased sediment availability or increased SLR), the tidal flat in front of the salt marsh is lagging behind the accretion rate on the salt marsh platform (Fagherazzi et al., 2006). A steepening scarp develops at the edge of the salt marsh, prone to wave attacks, and salt marsh retreat by lateral erosion is initiated (Fig. 5) (Mariotti and Fagherazzi, 2010). This process may lead to catastrophic collapse of an entire salt marsh (Mariotti and Fagherazzi, 2013). Callaghan et al. (2010) showed that gently sloping and highly elevated tidal flats with high sediment stability most effectively attenuate wave

1	
2	
3	
4	
т 5	
5	
07	
1	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
27	
31	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
03 E /	
54 57	
55	
56	
57	
58	
59	
60	

208	energy, even at highly exposed sites, and thereby inhibit lateral erosion of salt marshes
209	(Callaghan et al., 2010). Locally, this can also result in a reduced sediment supply for the
210	vertical growth of the salt marsh (Reed, 1988; van Leeuwen, 2008).
211	Besides the morphology of the tidal flats, wave impacts on seaward marsh edges and on the
212	adjacent tidal flats are influenced by local hydrodynamics. Strong wind or storm events
213	producing waves within tidal basins may coincide with high tide, when the tidal flats are
214	completely inundated. In such a case, larger fetch lengths, wave heights, and wave periods
215	increase the probability of vertical erosion of higher elevated tidal flats (Fagherazzi and
216	Wiberg, 2009). Elevated water levels may also amplify marsh edge erosion, since incoming
217	waves could directly reach to the scarp of the salt marsh (Tonelli et al., 2010).
218	b Lateral marsh erosion in the Wadden Sea. The process of lateral salt marsh erosion is of great
219	importance in the Wadden Sea. Successive embankments have reduced salt marsh area by
220	about 90% over the last millennium and often have shifted the coastline seaward (Reise,
221	2005). As a consequence, tidal basins became truncated at the landward side and the loss of
222	area increased the hydrodynamic energy due to an increased tidal range and enhanced storm
223	tide wedge (Wang et al., 1995; Flemming and Nyandwi, 1994; Reise, 2005). Lateral erosion at
224	the seaward edges of the foreland marshes was initiated (Reise et al., 2003). Brushwood
225	groynes were set up on the tidal flats fronting sea walls to attenuate wave energy and to
226	promote sediment accretion (Wolff et al., 2010). On these dike forelands, fast lateral
227	expansion at the expense of mud flats is observed combined with very high vertical accretion
228	rates of up to 18 mm/yr (Stock, 2011).

229	Meanwhile, the presence of a continuous dike line along most of the mainland coast of the
230	Wadden Sea inhibits the inland migration of the foreland marshes, which would be their
231	natural response to SLR and increased hydrodynamic energy. Wherever the marsh is laterally
232	eroding or vertical accretion rates in the pioneer and low marsh zones are below current SLR
233	rates, the marshes are squeezed in between the sea and the dike. This phenomenon, usually
234	referred to as "coastal squeeze", has been shown to intensify with accelerated sea level rise
235	and stronger storm activity (Bartholomä and Flemming, 2007; Doody, 2004; Flemming and
236	Nyandwi, 1994).
237	
238	3 Knowledge gaps in understanding of salt marsh dynamics
239	
240	Having evaluated the available literature related to vertical and lateral salt marsh dynamics,
241	we conclude that the general mechanisms of vertical salt marsh accretion and lateral salt
242	marsh development are well understood and described for homogenous salt marshes with a
243	constant sediment supply. Existing salt marsh models (e.g. Randerson, 1979; Krone, 1987;
244	Allen, 1990; French, 1993; D'Alpaos et al., 2007; D'Alpaos et al., 2011; Kirwan et al., 2010;
245	Marani et al., 2010; Mariotti and Fagherazzi, 2010; Mudd et al., 2004; Fagherazzi et al., 2006)
246	have proven their great potential for gaining process knowledge, since many of the involved
247	processes are hard to measure (Nolte et al., 2013). Most of these models, however, exhibit
248	shortcomings in the representation of spatial sedimentation patterns and with temporally

249	varying environmental boundary conditions (Andersen et al., 2011). As the main reasons for
250	these shortcomings we identify the following knowledge gaps:
251	1) Bio-physical interactions between the marsh vegetation and the hydromorphological
252	processes relevant for the vertical accretion processes on salt marshes are hardly investigated
253	yet (Temmerman et al., 2005; Neumeier and Amos, 2006; Marani et al., 2013). These
254	processes include the spatial influence of heterogeneous marsh vegetation on particle
255	flocculation, hence particle sizes and net sediment flux affecting vertical accretion rates.
256	Marani et al. (2013) have demonstrated the importance of such spatial heterogeneity for the
257	marsh development and concluded that these may affect the resilience of marshes against sea
258	level rise and sediment depletion.
259	2) Very little attention has been given to the effect of vegetation height in relation to
260	inundation height on sedimentation rates. While a few authors have compared the
261	hydrodynamic influences of emerging and submerged marsh vegetation (Temmerman et al.,
262	2005; Neumeier and Amos, 2006), nothing is known on how this ratio quantitatively influences
263	long-term sedimentation rates. Assuming a significant increase of depth-averaged flow
264	velocities once the marsh vegetation is completely submerged, one may expect a decrease of
265	depth-averaged settling velocities. This would be associated with lower sedimentation rates
266	than if a constant settling velocity is assumed. Specifically, this effect may be important if
267	changes in the tidal range and/or changes in storm patterns in combination with SLR result in
268	greater inundation depths.

ıarshes
าarshes
ıarshes
arshes
temporal
coastal salt
induced by
or a phase
ing coastal
ediment
gate these
ent supply
010).
e stability of
ty of
r observed
ey are
13;

291	Sediment resuspension on tidal flats positively influences vertical accretion rates on salt
292	marshes through increased sediment availability (Callaghan et al., 2010). At the same time,
293	lateral erosion may be caused as a consequence of vertically eroding tidal flats and hence
294	decreasing wave attenuation in front of the salt marsh (Mariotti and Fagherazzi, 2010).
295	Sediment resuspension on tidal flats is a function of the erodibility of the sediment and the
296	prevailing shear stress (Mariotti and Fagherazzi, 2010). The process of sediment resuspension
297	starts when the prevailing shear stress induced by tide- or wind-driven currents as well as
298	(breaking) waves exceeds the critical shear stress of the sediment surface (Miller et al., 1977;
299	van Rijn, 1993; Andersen et al., 2007; Mariotti and Fagherazzi, 2010). In most locations the
300	wind wave-induced shear stress is the dominant term for erosion on tidal flats (Le Hir et al.,
301	2000; French et al., 2000). The erosion rate thereby depends on the change of the critical
302	shear stress within the sediment surface layer (Sanford and Maa, 2001).
303	a Physical parameters affecting sediment stability. The erodibility of sediments is directly
304	related to its grain size composition (Hjulström, 1955). For non-cohesive (sandy) sediments the
305	critical shear stress continuously increases with higher grain sizes (Soulsby and Whitehouse,
306	1997). For cohesive (muddy) sediments it increases with smaller particle sizes (Hjulström,
307	1955) and stronger consolidation (Postma, 1961).
308	In natural environments, sediments are mostly a mixture of non-cohesive sandy and cohesive
309	muddy material (Andersen et al., 2010). Depending on the mineralogy and grain size

310 composition of the sediment, the highest critical shear stress is found at mud contents of

311	about 30-50% (Le Hir et al., 2007; Mitchener and Torfs, 1996; Grabowski et al., 2011). Based on
312	laboratory experiments (Panagiotopoulos et al., 1997), Ahmad et al. (2011) show that the
313	critical shear stress moderately increases with higher mud contents up to a mud content of
314	about 50%.; above 70% it dramatically decreases. Similarly, Panagiotopoulos et al., (1997)
315	suggests a maximum critical stress at a mud content of 50%.
316	b Grain size distribution in the tidal basins of the Wadden Sea. As a consequence of land
317	reclamation and "coastal squeeze", the finest grain size fraction in vicinity of the mainland has
318	been depleted in comparison to pre-embankment conditions (Flemming and Bartholomä,
319	1997; Flemming and Nyandwi, 1994; Mai and Bartholomä, 2000). This depletion is intensified
320	in narrow tidal basins and is assumed to continue as a consequence of increased SLR and
321	storm activity (Bartholomä and Flemming, 2007; Flemming and Nyandwi, 1994; Mai and
322	Bartholomä, 2000). Under storm conditions, wave-induced resuspension of tidal flat sediments
323	and the following export of primarily fine-grained material (Bartholomä and Flemming, 2007;
324	Lettmann et al., 2009) as well as an increasing amount of coarse-grained sediments imported
325	into the tidal basin via suspended load transport are responsible for this trend (Lettmann et al.,
326	2009; Santamarina Cuneo and Flemming, 2000).
327	A continuing depletion of fine-grained sediments could lead to higher sediment instability on
328	the tidal flats with less than 30% fine-grained sediments at present, and to higher sediment
329	stability on tidal flats with currently more than 50% fine-grained sediments (Le Hir et al., 2007;
330	Mitchener and Torfs, 1996; Grabowski et al., 2011). Hence, it could affect the availability of
331	fine-grained sediments for the salt marshes.

332	c Biological parameters influencing sediment stability. The biotic activity in and on the
333	sediment is considered as a major factor mediating the mud content of the sediment via
334	deposition of micro-phytoplankton, production of micro-phytobenthos as well as pelletisation
335	of macro-zoobenthos (Andersen et al., 2010). Even more importantly, biological activity is
336	directly affecting the stability of the sediment (Reise, 2002).
337	Among the biological parameters influencing the stability of tidal flat sediments, particular
338	emphasis is given to the influence of benthic diatoms and cyanobacteria. In the Wadden Sea
339	these have been shown to increase the sediment stability by the production of extracellular
340	polymeric substances (EPS) as well as colloidal carbohydrates and enhance local sedimentat
341	by direct trapping of suspended sediment (e.g. Andersen et al., 2010; Austen et al., 1999;
342	Lanuru et al., 2007; Paterson, 1989; Stal, 2010). The biomass of diatoms is restricted by the
343	availability of light and nutrients as well as by grazing and resuspension through the
344	macrozoobenthos. Highest concentrations are usually found in April and September (Anders
345	et al., 2010) and on higher elevated tidal flats (Austen et al., 1999). It should, however, be
346	noted that benthic diatoms, occurring on the sediment surface only influence the critical sh
347	stress at the sediment surface, while they do not decrease the erosion rate, once the critica
348	shear stress has been exceeded (Andersen, 2001; Mariotti and Fagherazzi, 2010).
349	Another important biological influence on the erodibility of the tidal flats is the presence of
350	macrozoobenthos, either stabilizing or destabilizing the sediment surface (Knaapen et al.,
351	2003; Volkenborn et al., 2007). In the Wadden Sea, the lugworm (Arenicola marina), for
252	example, as one of the most prevalent macrobenthic animals, has been shown to increase t

353	erodibility of the sediment by intense bioturbation. This activity also inhibits the colonization
354	of potentially sediment-stabilizing species, such as the tube-building polychaetes Polydora
355	cornuta and Lanice conchilega (Lanuru, 2004; Volkenborn et al., 2009). In any case, benthic
356	macrofauna tends to increase the surface roughness therefore enhancing the erodibility of the
357	sediment (Lanuru, 2004). Some benthic macrofauna species, such as the mud snail Hydrobia
358	ulvae additionally increase the erodibility of the sediment indirectly by grazing the biofilms of
359	diatoms and producing fecal pellets that are easily erodible (Andersen, 2001; Andersen and
360	Pejrup, 2002).
361	
362	2 Flocculation processes and floc settling velocity
363	
364	The settling velocity of suspended sediment is generally considered as a key factor for the
365	sediment dynamics in an estuary or coastal lagoon (Mantovanelli, 2005; van Leussen, 1988;
366	Winterwerp, 2002). While in theory, the settling velocity of non-cohesive single particles is
367	shown to be a function of particle size only (Soulsby and Whitehouse, 1997), in reality it is
368	controlled by the aggregation of cohesive sediment particles into flocs (Krone, 1962). Changes
369	of sediment composition and suspended sediment concentrations affect flocculation processes
370	and hence settling velocities of the suspended sediment. While flocculation processes are
371	related to high spatial and temporal variability, a general approximation for the settling
372	velocity of flocs (or single particles) as a function of the floc/particle diameter and its density is
373	given by Stokes law (Rubey, 1933).

374	According to their size and synthesis, Eisma (1986) distinguishes between micro-flocs (<125
375	μ m) and macro-flocs (<3-4 mm), built through collision of micro-flocs. The latter are much
376	larger, but less dense and more fragile than micro-flocs (Eisma, 1986). The organic content,
377	salinity, size of the single grains determine the flocculation ability, a measure of the probability
378	of particles to aggregate when colliding (Eisma, 1986; Kranck, 1973), while high sediment
379	concentrations and turbulent shear stress increase the probability of particle collision.
380	Meanwhile, the turbulent shear stress controls the maximum floc size by breaking up large
381	flocs in highly turbulent environments (Fig. 5) (van Leussen, 1994; Manning, 2004; Burban et
382	al., 1989; Winterwerp, 1998; Winterwerp et al., 2006). The turbulent shear stress threshold,
383	resulting in the maximum floc size and the highest settling velocities, is controlled by the
384	prevailing environmental conditions, such as, for example, the sediment composition
385	(Manning et al., 2010). It ranges from 0.3 N/m ² to 0.6 N/m ² (Manning, 2004; Winterwerp et al.,
386	2006; Manning and Dyer, 2007; Manning et al., 2010), whereas for microflocs it tends to be
387	higher (Fig. 5) (Manning, 2004; Manning and Dyer, 2007). Given that the suspended sediment
388	concentration is below the critical value where hindering effects for sediment settling occur
389	(Winterwerp, 2002), the settling velocity of a floc can be approximated by an exponential
390	relationship with the suspended sediment concentration (Burt, 1986).
391	Bioaggregation, the flocculation process mediated by organic matter, is considered as the most
392	important driver for flocculation in many coastal waters, including the Wadden Sea (Alldredge

- and Silver, 1988; van Straaten and Kuenen, 1957). It is mostly driven by the influence of
- 394 microalgae, such as diatoms, binding mineral particles together, producing the so-called

395	marine snow. High rates of bioaggregation or production of marine snow are observed during
396	algae blooms with a corresponding increase in settling velocity of the suspended matter
397	(Alldredge and Gotschalk, 1989). Another important trigger for bioaggregation is the presence
398	of filter-feeding organisms, such as Mytilus edulis and Cerastoderma edule (van Straaten and
399	Kuenen, 1957; Verwey, 1952) or <i>Hydrobia ulvae</i> (Andersen and Pejrup, 2002). Through
400	biodepositon, these filter-feeders enhance sediment settling, while producing faecal pellets
401	and pseudo-faeces (Graf and Rosenberg, 1997; Kautsky and Evans, 1987). Therefore, particle
402	sizes and settling velocities increase in areas, where filter-feeding organisms are abundant
403	(Andersen and Pejrup, 2002).
404	
405	3 Flocculation processes on salt marshes
406	
407	Flocculation processes are different on vegetated marsh platforms in comparison to
408	unvegetated tidal flats (Graham and Manning, 2007). Due to a continuous decrease of flow
409	velocity and turbulent energy towards the inner parts of the marsh, larger sediment particles
410	and flocs are settling in the vicinity of the marsh edge and the tidal channels, while smaller
411	sediment particles are transported further into the marsh (Fig. 2) (Christiansen et al., 2000;
412	French and Spencer, 1993; Temmerman et al., 2004b; Temmerman et al., 2003a). A lower flow
413	velocity and turbulent energy in the inner part facilitates sedimentation due to reduced
414	vertical turbulent diffusion (Mudd et al., 2010; Neumeier and Amos, 2006; Shi et al., 1996), but
415	may also inhibit flocculation of fine-grained sediments and reduce settling velocities, since the

4	16	prevailing turbulent shear stress is usually lower than the critical turbulent shear stress for the
4	17	maximum floc size (Fig. 2) (Neumeier and Amos, 2006; Fagherazzi et al., 2012).
4	18	Furthermore, vertical flow gradients on vegetated salt marsh platforms (Leonard and Luther,
4	19	1995) affect sediment deposition on salt marshes (Neumeier and Amos, 2006). Flow velocity
4	20	and turbulent shear stress within the vegetation canopy are considerably lower than above the
4	21	vegetation or on the bare tidal flats, thereby promoting the settlement of cohesive sediment.
4	22	On the other hand, increasing flow velocity and turbulent shear stress above the vegetation
4	23	canopy inhibit sediment settlement through high flow velocities (Shi et al., 1996), while
4	24	simultaneously increasing the floc sizes through high turbulent shear stress (if those are not
4	25	exceeding the critical value) (Manning, 2004). During storm tides, such large flocs are travelling
4	26	over the marsh and reach higher marsh elevations or slowly sink into the vegetation canopy.
4	27	Thus, events of increased sediment settling may be observed there. Generally, flocculation
4	28	processes on salt marshes are controlled by the density and the morphology of marsh
4	29	vegetation (Graham and Manning, 2007) but are still unknown to a large extent.
4	30	
4	31	4 Knowledge gaps in understanding of tidal basin sediment dynamics
4	32	
4	33	Sediment dynamics on tidal flats are extremely complex and not fully understood yet.
4	34	Attempts to assess them in a spatio-temporal context are rare and usually subject to high
4	35	uncertainties (Widdows et al., 2004; Rahbani, 2011). In particular, the factors that determine

	Progress in Physical Geography		
436	the grain size distribution on the tidal flats are not sufficiently known. This leads to the inability		
437	to accurately estimate sediment resuspension and settling velocities (Wang et al., 2012).		
438	Furthermore, the actual processes of sediment resuspension and flocculation are still highly		
439	uncertain for sand-mud mixtures as well as the influence of biological parameters that show a		
440	strong spatial and temporal variability. For modelling the morphological development of salt		
441	marshes, these uncertainties pose a serious challenge, particularly because the long-term		
442	sediment availability, its short-term temporal variations, and the sediment composition are		
443	often unknown (Andersen et al., 2011).		
444			
445	V The sedimentary system of the Wadden Sea		
446			
447	1 The concept of a sand-sharing system		
448			
449	The morphological elements of the Wadden Sea system can be described as a sand-sharing		
450	system (Fig. 6), which distributes the sediment within the system according to prevailing		
451	hydrodynamics and morphological conditions (CPSL, 2001). Through redistribution of the		
452	sediment within the sand-sharing system, sediment required for the tidal flats to adapt to SLR		
453	is removed from the ebb-tidal deltas and transported into the tidal basins by tide or wind		
454	induced currents, and is therefore potentially available for deposition on the salt marshes		
455	(Elias et al., 2007; Hofstede, 1999a). Wind and wave activity significantly modify the sediment		
456	exchange between the ebb-tidal delta and the tidal basin by reducing the size of the ebb-tidal		
	22		
	http://mc.manuscrfptcentral.com/PiPG		

1	
2	
3	
4	
5	
6	
6	
1	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
30	
37	
38	
39	
40	
41	
42	
12	
43	
44	
45	
46	
47	
48	
10	
50	
51	
52	
53	
54	
55	
55	
50	
5/	
58	
50	

457 delta through erosion and an increased shoreward sediment flux into the tidal basin (Hofstede, 458 1999b; Walton and Adams, 1976). The incoming sediment is distributed through (sub-)tidal 459 channels, from where adjacent tidal flats and salt marshes are inundated and supplied with 460 allochthonous sediment. 461 462 2 Fine and coarse-grained sediment transport into the tidal basins 463 As a consequence of the shore-normal energy gradient (i.e. decreasing current velocities 464 465 towards the inner tidal basin) and the so-called settling and scour lags (van Straaten and 466 Kuenen, 1957; Postma, 1961), fine-grained sediments are transported further into the tidal 467 basins, whereas the coarse-grained sediments tend to settle in the vicinity of tidal inlets 468 (Flemming and Nyandwi, 1994). The settling and scour lags are resulting from the transport of 469 the fine-grained sediment during its settling phase and the higher current velocity needed to 470 resuspend a sediment particle from the seabed than to deposit it (van Straaten and Kuenen, 471 1957; Postma, 1961). These processes are considered as the most important ones for a net 472 import of fine-grained sediments into the tidal basins of the Wadden Sea (van Straaten and 473 Kuenen, 1958). 474 Additionally, the distortion of the tidal wave in coastal areas and the density-driven currents

- 475 between the North Sea and the Wadden Sea as well as the (de-)stabilizing effect of physical
- 476 sediment properties and benthic organisms are controlling the net amount of sediment
- 477 accumulating within the tidal basins (CPSL, 2010). When travelling in shallow water or along an

	Progress in Physical Geography
478	estuary or tidal basin, the distortion of the tidal wave induces shorter but stronger flood
479	currents and longer but weaker ebb currents (Dronkers, 1986; van der Spek, 1997). Stronger
480	flood currents (in comparison to the respective ebb currents) promote the import of coarse-
481	grained sediment via bed-load and/or suspended transport (Dronkers, 1986; van der Spek,
482	1997; van Kreeke and Hibma, 2005; Wang et al., 2012). Meanwhile, an elongated high slack
483	water period (in comparison to the previous and the following low slack water periods) may
484	enhance the net import via suspended load transport and the sedimentation of fine-grained
485	sediments (Dronkers, 1986; van Straaten and Kuenen, 1958; van Kreeke and Hibma, 2005). In
486	enclosed, gently sloping tidal basins with most of the tidal flats located below MSL, the
487	distortion of the tidal wave results in a larger import of fine-grained sediments compared to
488	open-shaped, steeply sloping tidal basins with most of the tidal flats located above MSL
489	(Dronkers, 1986; Pedersen and Bartholdy, 2006). The import of coarse-grained sediments is
490	smaller or even negative in tidal basins with large tidal flat areas and larger in tidal basins with
491	smaller tidal flat areas (Dronkers, 1986).
492	Due to these different drivers for the import of fine and coarse grained sediments, contrasting
493	fluxes may occur within a tidal basin during a single tidal cycle (van Kreeke and Hibma, 2005). A
494	net export of coarse-grained sediment in tidal basins with large tidal flat areas, for example,
495	may be balanced or exceeded by the import of suspended fine-grained sediments
496	(Ridderinkhof, 1997). Usually (during calm weather conditions), the suspended load import of
497	fine-grained sediment dominates over the net import of coarse-grained sediments (Wang et
498	al., 2012). During strong-wind and storm events, the import of coarse-grained sediments via
	24
	http://mc.manuscrfptcentral.com/PiPG

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
∠3 ว≀	
∠4 ว⊑	
20 26	
20 27	
∠1 28	
20 20	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

499	suspended load transport considerably increases, thereby exceeding the import of fine-grained
500	sediments (Santamarina Cuneo and Flemming, 2000; Van Goor et al., 2003).
501	Seasonal variations of the total sediment import into the tidal basin of the Wadden Sea are
502	induced by increased bioaggregation during spring and early summer algae blooms (Alldredge
503	and Gotschalk, 1989) as well as through biodepositon of filter feeding organisms, which are
504	more active during the warm summer months (Andersen and Pejrup, 2002). Density-driven
505	currents, induced by higher variations of fresh water input into the tidal basins and larger
506	seasonal temperature variations, may amplify the seasonal variations of the fine-grained
507	sediment import, although its relevance for the Wadden Sea is under debate (van Beusekom et
508	al., 2012; Wang et al., 2012).
509	
510	3 Sediment sources
511	
512	External sources of predominantly coarse-grained sediments other than the neighbouring tidal
513	basins are found on the foreshore, the seaward beaches, and in the dunes of the barrier
514	islands (CPSL, 2010). Most fine-grained sediments are supplied from riverine inputs such as the
515	Rhine or the Elbe River as well as from soft-rock erosion on the English East Coast (Gayer et al.,
516	2006) and presumably from ancient river valleys now located offshore (Dellwig et al., 2000).
517	Other sources of fine-grained sediment are atmospheric deposition, primary production, direct
518	fluvial input, and sediment from salt marsh erosion (Pedersen and Bartholdy, 2006; Pejrup et

519	al., 1997). These sources strongly determine the availability of fine-grained sediments in the
520	coastal North Sea and the import into the tidal basins of the Wadden Sea.
521	For most tidal basins in the Wadden Sea, sediment import from the coastal North Sea is the
522	largest contribution to the total fine-grained sediment inventory (Dellwig et al., 2000).
523	Pedersen and Bartholdy (2006), for example, found the import to vary between 52 to 82% in
524	four Danish tidal basins. Estimated net imports of fine-grained sediment vary between 0.10 g
525	m ⁻³ (List tidal basin) to 0.53 g m ⁻³ (Grådyb basin) for an average tidal cycle within a distance of
526	only 60 km, for example (Pedersen and Bartholdy, 2006).
527	
528	4 Trapping capacity of the tidal basins
529	
530	An important parameter influencing the net sediment transport into the tidal basin is their
531	trapping capacity. It is generally controlled by bed roughness and sediment stability, which are,
532	to a large extent, determined by biological activity. Especially where vegetation canopies such
533	as seagrass beds or salt marshes are present, but also where mussel beds and other reef-
534	building epibenthic organisms are found, currents are slowed down, sediment resuspension is
535	inhibited, and sediment accretion is enhanced. At the same time the sediment stability is
536	increased due to the binding forces of the roots and the presence of biofilms inhibiting
537	sediment resuspension (CPSL, 2010; Ward et al., 1984). Increased sediment stability
538	additionally amplifies the scour lag effect and thereby contributes to the import of fine-grained
539	sediments (Vos and van Kesteren, 2000).

Progress in Physical Geography

1
2
3
4
5
6
7
0
0
9
10
11
12
13
14
15
16
17
18
19
20
21
22
22
20
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
20
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
00
00
5/
58
59
60

541	5 Knowledge gaps in understanding the sedimentary system of the Wadden Sea
542	
543	Looking into the future development of the salt marshes in the Wadden Sea, we identify the
544	availability of fine-grained sediments and their settling velocities on salt marshes to be
545	crucially important. These parameters largely depend on the amount and composition of
546	sediments being imported into the tidal basins and their erodibility, once deposited on the
547	tidal flats. Given the projected SLR for the Wadden Sea region, insufficient knowledge is
548	available about how the tidal flats will evolve in the future with respect to their elevation and
549	composition. One of the main reasons for this is the current practice of assessing the sediment
550	budgets of the different tidal basins per sediment fraction, rather than looking at the
551	combined cohesive and non-cohesive sediment budgets (Wang et al., 2012). Future modelling
552	approaches will need to concentrate on the total sediment budget, thereby integrating the
553	cohesive and non-cohesive sediments and their grain sizes. They additionally need to account
554	for the morphological differences between the various tidal basins and their trapping
555	efficiencies that are strongly controlled by the variable biological activity.
556	In this review, we studied the morphological processes within tidal basins consisting of
557	channels, tidal flats and salt marshes (Fig. 6). However, it should be noted that in large tidal
558	basins, subtidal flats comprise large areas (up to 60%). It is likely that the morphological
559	behaviour in this deeper zone is not the same as described for the intertidal areas. Hardly any
560	research has been performed on interactions between subtidal and intertidal flats on the

sediment budgets of the tidal basins, but doing so could possibly further improve the

- 562 understanding of the sedimentary system of the Wadden Sea.
- VI An integrated conceptual model for the Wadden Sea salt marshes

By evaluating the available literature on hydromorphological processes directly and indirectly affecting the development of the Wadden Sea salt marshes, we identify important interactions between sedimentary processes taking place on salt marshes as well as on tidal flats and the entire tidal basins. Knowledge gaps are identified that we consider responsible for the limited ability of salt marsh models to predict the future development of the Wadden Sea salt marshes. Partly, the existence of these knowledge gaps is due to the lack of reliable empirical data, but also due to the high degree of complexity of the involved processes. However, for estimating the future development of coastal salt marshes under the influence of projected global sea level rise, these processes have to be accounted for in salt marsh modelling, since they drive the temporal and spatial variability of sediment supplied to the salt marshes. In order to overcome this issue and bring forward the development of salt marsh models, we propose a conceptual model (Fig. 7) that integrates the most important interactions between the fringing salt marshes and the neighbouring tidal flats and tidal basins. This model aims to reduce the complexity of the system by identifying the processes that are directly responsible the quantity and quality of the sediment supplied to the salt marshes. It draws the sediment

2	
3	
4	
5	
6	
7	
γ Q	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
20	
20	
21	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
<u>40</u>	
12	
42	
40	
44	
40	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	
50	

60

pathways that are relevant for the development of salt marshes and clarifies their role withinthe morphological system of the Wadden Sea.

583

584 1 Description of the conceptual model

585

586 Sediment import during calm weather periods is dominated by the import of fine-grained 587 sediments via suspended sediment load and a minor contribution of coarse-grained sediment 588 import via bed-load and/or suspended load transport (Fig. 7, 2). When onshore winds increase 589 (inducing set-up of the water level), more coarse-grained sediments are imported via 590 suspended sediment load, exceeding the import of fine-grained sediments during storm events 591 (Fig. 7, 1). While flooding the tidal flats, parts of these suspended sediments are deposited on 592 the tidal flats (Fig. 7, 5). The net sediment accumulation is mainly determined by the 593 topography and the bed roughness of the tidal flats, which strongly depend on the physical 594 sediment characteristics as well as the epibenthic structures on the tidal flats (Fig. 7, 3). 595 Similarly, the physical sediment characteristics of the tidal flats and the biological activity on 596 them determine the erodibility of the tidal flat sediments (Fig. 7, 3+4). The eroded sediment 597 from the tidal flats and from the marsh scarp is either exported from the tidal basin via the 598 tidal channels (Fig. 7, 5) or transported onto the salt marsh during strong wind or storm events 599 (Fig. 7, 6). The composition of this sediment is rather fine, but depends on the characteristics 600 of the tidal flat and the prevailing hydrodynamic conditions. Meanwhile, a direct input of 601 sediment from the tidal channel towards the salt marsh is predominantly occurring during

6	502	strong wind and storm events (Fig. 7, 7), whereas the composition of this sediment may be
6	503	considerably coarser than the sediment that is eroded from the tidal flats. Once transported
6	504	onto the salt marsh, a spatial pattern regarding the suspended sediment characteristics is
6	505	observed (Fig. 7, 8+9). More and coarser sediments are found towards the seaward part of the
6	506	marsh or in vicinity of the marsh creeks (Fig. 7, 8) compared to the inner part of the marsh,
(507	where less and finer sediments are found in suspension (Fig. 7, 9). The differences in
6	508	suspended sediment characteristics induce higher settling velocities in the seaward part of the
(509	marsh, whereas these may vary vertically. Due to the higher turbulence level above the
6	510	vegetation, flocculation is promoted, while the higher flow velocities allow the settlement of
(511	only the largest flocs/particles. In contrast, the floc size within the vegetation is smaller due to
(512	the lower turbulence level, but strongly reduced flow velocities allow the small particles and
(513	flocs to settle (Fig. 7, 8+9).
(514	
(515	2 Suggested use of the proposed conceptual model
(516	
(517	The proposed conceptual model has been developed in order to reduce the complexity of
(518	representing the involved processes in the (sub-)tidal sediment dynamics and thereby improve
(519	the estimation of boundary conditions and model parameters for salt marsh models. An
(520	implementation of this conceptual model includes the coupling of existing models that
(521	specifically address the different processes as shown in figure 7. Such a coupled modelling
(522	approach could be used to investigate how changes in the large-scale sedimentary system of

623	the Wadden Sea would affect the development of the fringing salt marshes. Furthermore, the
624	model could be used to estimate the influence of long-term (SLR) as well as short-term sea
625	level variations (storm activity) on the future survival of the salt marshes. Besides the region of
626	the Wadden Sea, the model could also be applied to comparable sedimentary systems, such as
627	coastal lagoons with active inlets behind a coastal barrier.
628	Based on the proposed conceptual model, an integrated modelling approach could more
629	efficiently capture the process interactions within the tidal basin - tidal flat - salt marsh
630	continuum and thereby overcome some of the above identified knowledge gaps. For example,
631	it could investigate and, to some extent quantify, the influence of a gradual increase of global
632	and regional MSL in the coming century (Meehl et al., 2007; Vermeer and Rahmstorf, 2009;
633	Wahl et al., 2010) on the sediment availability for coastal salt marshes as described in the
634	following example:
635	A gradual SLR increases the demand for fine and/or coarse-grained sediments on the tidal flats
636	and the demand for fine-grained sediments for the salt marshes to keep pace with SLR. The
637	fine-grained sediment budget will be affected by a modified distortion of the tidal wave within
638	the tidal basin. Accelerated sea level rise with tidal flats lagging behind in net accretion would
639	increase the proportion of shallow subtidal areas at the expanses of intertidal flats. A modified
640	tidal wave distortion could favour the import of fine-grained sediments during calm weather
641	conditions, increasing, in turn, the sediment availability for the fringing salt marshes. The
642	single-grain settling velocities might decrease and the flocculation ability of the sediment
643	particles might increase correspondingly.

644	In contrast, increasing storm surge heights and a possible moderate increase of storm activity
645	(Weisse et al., 2006; Weisse et al., 2012; Woth et al., 2006), could lead to a stronger net export
646	of fine-grained sediments. In the long-term, this could amplify the trend towards coarser
647	sediments in the Wadden Sea and decrease the sediment availability for salt marshes. With a
648	coarser sediment fraction available, the single-grain settling velocities would increase and the
649	flocculation ability of the sediment would decrease.
650	
651	VII Conclusions
652	
653	The above conceptual model is proposed as a framework for salt marsh modellers in order to
654	facilitate the integration of important interactions between processes taking place within tidal
655	basins, tidal flats, and on salt marshes for estimating future salt marsh development. It
656	graphically displays the following more generic conclusions that we draw from this study:
657	1) Sediment availability for salt marshes depends on the morphology of tidal basins and on
658	whether future SLR will be accompanied by increasing storm activity or not.
659	2) Changing grain-size distribution in response to climate change potentially affects the salt
660	marsh development by modified sediment availability and changes particle/floc settling
661	velocities.
662	3) Flocculation processes on salt marshes are strongly influenced by the available sediment
663	and its grain-size distribution as well as the structural dynamics of salt marsh vegetation and
664	may considerably influence the spatial accretion patterns and the vertical accretion rates.

2	
3	
4	
5	
6	
7	
<i>i</i>	
8	
9	
10	
11	
12	
13	
11	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
21	
3Z	
33	
34	
35	
36	
37	
38	
39	
10	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	

60

Existing salt marsh models are well capable of identifying important processes dominating salt
marsh accretion. However, important processes in the tidal basins and on its tidal flats that
determine the local sediment availability and sediment characteristics are not yet sufficiently
incorporated.

669

670 References

671

672 Adam P (1990) Saltmarsh Ecology. Sydney: Cambridge University Press.

- 673 Ahmad MF, Dong P, Mamat M, Nik WBW and Mohd MH (2011) The Critical Shear Stresses for
- 674 Sand and Mud Mixture. *Applied Mathematical Sciences* 5(2): 53-71.
- 675 Alldredge AL and Silver MW (1988) Characteristics, dynamics and significance of marine snow.
- 676 *Progress in Oceanography* 20(1): 41-82.
- 677 Alldredge AL and Gotschalk CC (1989) Direct observations of the mass flocculation of diatom
- 678 blooms: characteristics, settling velocities and formation of diatom aggregates. Deep Sea
- 679 Research Part A. Oceanographic Research Papers 36(2): 159-171.
- 680 Allen JRL (1990) Salt-marsh growth and stratification: A numerical model with special
- 681 reference to the Severn Estuary, southwest Britain. *Marine Geology* 95(2): 77-96.
- 682 Allen JRL (1995) Salt-marsh growth and fluctuating sea level: implications of a simulation
- 683 model for Flandrian coastal stratigraphy and peat-based sea-level curves. Sedimentary Geology
- 684 100(1-4): 21-45.

685	Allen JRL (2000) Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic
686	and Southern North Sea coasts of Europe. Quaternary Science Reviews 19(12): 1155-1231.
687	Andersen TJ and Pejrup M (2001) Suspended sediment transport on a temperate, microtidal
688	mudflat, the Danish Wadden Sea. Marine Geology 173(1-4): 69-85.
689	Andersen TJ (2001) Seasonal Variation in Erodibility of Two Temperate, Microtidal Mudflats.
690	Estuarine, Coastal and Shelf Science 53(1): 1-12.
691	Andersen TJ and Pejrup M (2002) Biological Mediation of the Settling Velocity of Bed Material
692	Eroded from an Intertidal Mudflat, the Danish Wadden Sea. Estuarine, Coastal and Shelf
693	Science 54(4): 737-745.
694	Andersen TJ, Fredsoe J and Pejrup M (2007) In situ estimation of erosion and deposition
695	thresholds by Acoustic Doppler Velocimeter (ADV). <i>Estuarine, Coastal and Shelf Science</i> 75(3):
696	327-336.
697	Andersen TJ, Lanuru M, van Bernem C, Pejrup M and Riethmueller R (2010) Erodibility of a
698	mixed mudflat dominated by microphytobenthos and Cerastoderma edule, East Frisian
699	Wadden Sea, Germany. Estuarine, Coastal and Shelf Science 87(2): 197-206.
700	Andersen TJ, Svinth S and Pejrup M (2011) Temporal variation of accumulation rates on a
701	natural salt marsh in the 20th century - The impact of sea level rise and increased inundation
702	frequency. Marine Geology 279(1-4): 178-187.
703	Austen I, Andersen TJ and Edelvang K (1999) The Influence of Benthic Diatoms and
704	Invertebrates on the Erodibility of an Intertidal Mudflat, the Danish Wadden Sea. Estuarine,
705	Coastal and Shelf Science 49(1): 99-111.

2	
3	
5	
6	
7	
8	
9 10	
11	
12	
13	
14	
15	
17	
18	
19	
20	
21	
23	
24	
25	
26	
27 28	
29	
30	
31	
32	
33 34	
35	
36	
37	
38	
40	
41	
42	
43	
44 45	
46	
47	
48	
49 50	
51	
52	
53	
54 55	
55 56	
57	
58	
59	
60	

706 Bakker JP (1985) The impact of grazing on plant communities, plant populations and soil 707 conditions on salt marshes. *Plant Ecology* 62(1): 391-398. 708 Bakker JP, Bunje J, Dijkema K, Frikke J, Hecker N, Kers B, Körber P, Kohlus J and Stock M (2005) 709 Salt marshes. In: Essink K, Dettmann C, Farke H, Laursen K, Lüerßen G, Marencic H and 710 Wiersinga W (eds) Wadden Sea Quality Status Report 2004. Wadden Sea Ecosystem No. 19. 711 Wilhelmshaven, Germany: Trilateral Monitoring and Assessment Group, Common Wadden Sea 712 Secretariat. 713 Bartholdy J, Christiansen C and Kunzendorf H (2004) Long term variations in backbarrier salt 714 marsh deposition on the Skallingen peninsula - the Danish Wadden Sea. Marine Geology 715 203(1-2): 1-21. 716 Bartholdy AT, Bartholdy J and Kroon A (2010) Salt marsh stability and patterns of 717 sedimentation across a backbarrier platform. Marine Geology 278(1-4): 31-42. 718 Bartholomä A and Flemming BW (2007) Progressive grain-size sorting along an intertidal 719 energy gradient. Sedimentary Geology 202(3): 464-472. 720 Bellucci LG, Frignani M, Cochran JK, Albertazzi S, Zaggia L, Cecconi G and Hopkins H (2007) Pb-721 210 and Cs-137 as chronometers for salt marsh accretion in the Venice Lagoon - Links to 722 flooding frequency and climate change. Journal of Environmental Radioactivity 97(2-3): 85-102. 723 Bockelmann A-C, Bakker JP, Neuhaus R and Lage J (2002) The relation between vegetation 724 zonation, elevation and inundation frequency in a Wadden Sea salt marsh. Aquatic Botany 725 73(3): 211-221.

- 727 waters. Journal of Geophysical Research: Oceans 94(C6): 8323-8330.
- 728 Burt TN (1986) Field settling velocities of estuary muds. In: Metha AJ (ed) Estuarine cohesive
- *sediment dynamics.* Berlin: Springer-Verlag, pp.126-150.
- 730 Callaghan DP, Bouma TJ, Klaassen P, Van der Wal D, Stive MJF and Herman PMJ (2010)
- 731 Hydrodynamic forcing on salt-marsh development: Distinguishing the relative importance of
- 732 waves and tidal flows. *Estuarine, Coastal and Shelf Science* 89(1): 73-88.
- 733 Cahoon DR, Reed DJ and Day JW (1995) Estimating shallow subsidence in microtidal salt
- 734 marshes of the southeastern United States: Kaye and Barghoorn revisited. *Marine Geology*
- 735 128(1-2): 1-9.
- 736 Chmura GL (2013) What do we need to assess the sustainability of the tidal salt marsh carbon
- 737 sink? Ocean & Coastal Management 83(0): 25-31.
- 738 Christiansen T, Wiberg PL and Milligan TG (2000) Flow and Sediment Transport on a Tidal Salt
- 739 Marsh Surface. Estuarine, Coastal and Shelf Science 50(3): 315-331.
- 740 CPSL (2001) Final Report of the Trilateral Working Group on Coastal Protection and Sea Level
- *Rise*. Wilhelmshaven, Germany: Common Wadden Sea Secretariat.
- 742 CPSL (2010) CPSL Third Report. The role of spatial planning and sediment in coastal risk
- 743 managment. Wihlemshaven, Germany: Common Wadden Sea Secretariat, Trilateral Working
- 744 Group on Coastal Protection and Sea Level Rise (CPSL).

2	
3	
4	
5	
6	
7	
8	
ă	
10	
10	
11	
12	
13	
14	
15	
16	
17	
11	
18	
19	
20	
21	
22	
23	
24	
27	
20	
20	
27	
28	
29	
30	
31	
32	
22	
22	
34	
35	
36	
37	
38	
39	
10	
40	
41	
42	
43	
44	
45	
46	
47	
48	
10	
49 50	
50	
51	
52	
53	
54	
55	
56	
57	
57	
20	
59	
60	

745 CWSS - Common Wadden Sea Secretariat (2008) The Wadden Sea - Nomination of the Dutch-

- 746 *German Wadden Sea as World Heritage Site Volume One*. Wilhelmshaven, Germany:
- 747 Common Wadden Sea Secretariat.
- 748 D'Alpaos A, Lanzoni S, Marani M and Rinaldo A (2007) Landscape evolution in tidal
- 749 embayments: Modeling the interplay of erosion, sedimentation, and vegetation dynamics.
- 750 Journal of Geophysical Research-Earth Surface 112(F1): 17.
- 751 D'Alpaos A, Mudd SM and Carniello L (2011) Dynamic response of marshes to perturbations in
- 752 suspended sediment concentrations and rates of relative sea level rise. Journal of Geophysical
- 753 Research-Earth Surface 116(F4): F04020.
- 754 Dellwig O, Hinrichs J, Hild A and Brumsack HJ (2000) Changing sedimentation in tidal flat
- 755 sediments of the southern North Sea from the Holocene to the present: a geochemical
- 756 approach. Journal of Sea Research 44(3-4): 195-208.
- 757 de Vlas J (2005) Evaluation after 18 years of gas extraction. Available at:
- 758 http://www.waddenzee.nl/fileadmin/content/Bodemdaling/2005/pdf/Summary_monitoring_s
- vbsidence_Ameland_2000-2005_addition_english.pdf (accessed 15 May 2012).
- 760 Doody J (2004) 'Coastal squeeze'— an historical perspective. Journal of Coastal Conservation
- 761 10(1): 129-138.
- 762 Dronkers J (1986) Tidal asymmetry and estuarine morphology. Netherlands Journal of Sea
- 763 *Research* 20(2-3): 117-131.
- 764 Duarte C, Dennison W, Orth RW and Carruthers TB (2008) The Charisma of Coastal Ecosystems:
- 765 Addressing the Imbalance. *Estuaries and Coasts* 31(2): 233-238.

766	Eisma D (1986) Flocculation and de-flocculation of suspended matter in estuaries. Netherlands
767	Journal of Sea Research 20(2-3): 183-199.
768	Elias EPL, van Koningsveld M, Tonnon PK and Wang ZB (2007) Sediment budget analysis and
769	testing hypotheses for the Dutch coastal system. Report Z4100. Delft, The Netherlands:
770	WL Delft Hydraulics
771	Esselink P, Petersen J, Arens S, Bakker JP, Bunje J, Dijkema KS, Hecker N, Hellwig U, Jensen A-V,
772	Kers AS, Körber P, Lammerts EJ, Stock M, Veeneklaas RM, Vreeken M and Wolters M (2009)
773	Salt Marshes. Thematic Report No. 8. In: Marencic H and de Vlas J (eds) <i>Quality Status Report</i>
774	2009. Wadden Sea Ecosystem No. 25. Wilhelmshaven, Germany: Common Wadden Sea
775	Secretariat, Trilateral Monitoring and Assessment Group.
776	Fagherazzi S, Carniello L, D'Alpaos L and Defina A (2006) Critical bifurcation of shallow
777	microtidal landforms in tidal flats and salt marshes. Proceedings of the National Academy of
778	Sciences 103(22): 8337-8341.
779	Fagherazzi S and Wiberg PL (2009) Importance of wind conditions, fetch, and water levels on
780	wave-generated shear stresses in shallow intertidal basins. Journal of Geophysical Research
781	114(F3): F03022.
782	Fagherazzi S, Kirwan ML, Mudd SM, Guntenspergen GR, Temmerman S, D'Alpaos A, van de
783	Koppel J, Rybczyk JM, Reyes E, Craft C and Clough J (2012) Numerical models of salt marsh

evolution: Ecological, geomorphic, and climatic factors. *Reviews of Geophysics* 50(1): RG1002.

2
3 1
4 5
6
7
1
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
20
20
39
4U
41
42
43
44 45
45
40
47
48
49 50
50
51
52
53
54
55
56
57
58
59
60

785 Feagin RA, Lozada-Bernard SM, Ravens TM, Möller I, Yeager KM and Baird AH (2009) Does

- 786 vegetation prevent wave erosion of salt marsh edges? Proceedings of the National Academy of
- 787 Sciences 106(25): 10109-10113.
- 788 Flemming B and Nyandwi N (1994) Land reclamation as a cause of fine-grained sediment
- 789 depletion in backbarrier tidal flats (Southern North Sea). Aquatic Ecology 28(3): 299-307.
- 790 Flemming B and Bartholomä A (1997) Response of the wadden sea to a rising sea level: a
- 791 Predictive empirical model. *Ocean Dynamics* 49(2): 343-353.
- 792 French JR (1993) Numerical simulation of vertical marsh growth and adjustment to accelerated
- 793 sea-level rise, North Norfolk, U.K. Earth Surface Processes and Landforms 18(1): 63-81.
- 794 French JR and Spencer T (1993) Dynamics of sedimentation in a tide-dominated backbarrier
- 795 salt marsh, Norfolk, UK. *Marine Geology* 110(3-4): 315-331.
- 796 French, C.E., French, J.R., Clifford, N.J. and Watson, C.J. 2000: Sedimentation-erosion dynamics
- 797 of abandoned reclamations: the role of waves and tides. *Continental Shelf Research* 20: 1711-
 - 798 1733.
- 799 Gayer G, Dick S, Pleskachevsky A and Rosenthal W (2006) Numerical modeling of suspended
- 800 matter transport in the North Sea. *Ocean Dynamics* 56(1): 62-77.
- 801 Grabowski RC, Droppo IG and Wharton G (2011) Erodibility of cohesive sediment: The
- 802 importance of sediment properties. *Earth-Science Reviews* 105(3-4): 101-120.
- 803 Graf G and Rosenberg R (1997) Bioresuspension and biodeposition: a review. Journal of Marine
- 804 *Systems* 11(3-4): 269-278.

- 806 canopy. *Continental Shelf Research* 27(8): 1060-1079.
- 807 Harrison EZ and Bloom AL (1977) Sedimentation rates on tidal salt marshes in Connecticut.
- 808 Journal of Sedimentary Research 47(4): 1484-1490.
- 809 Hjulström F (1955) Transportation of detritus by moving water. In: Trask PD (ed) Recent Marine
- *Sediments*. New York: Dover Publications, pp.5-31.
- 811 Hofstede JLA (1999a) Process-response analysis for Hörnum tidal inlet in the German sector of
- the Wadden Sea. *Quaternary International* 60(1): 107-117.
- 813 Hofstede JLA (1999b) Regional differences in the morphologic behaviour of four German
- 814 Wadden Sea barriers. *Quaternary International* 56(1): 99-106.
- 815 Howes NC, FitzGerald DM, Hughes ZJ, Georgiou IY, Kulp MA, Miner MD, Smith JM and Barras
- 816 JA (2010) Hurricane-induced failure of low salinity wetlands. Proceedings of the National
- 817 Academy of Sciences.
- 818 Kautsky N and Evans S (1987) Role of biodeposition by Mytilus edulis in the circulation of
- 819 matter and nutrients in a Baltic coastal ecosystem. Marine Ecology Progress Series 38(3): 201-
 - 820 212.

- 821 Kirwan M and Temmerman S (2009) Coastal marsh response to historical and future sea-level
- acceleration. *Quaternary Science Reviews* 28(17-18): 1801-1808.
- 823 Kirwan ML and Guntenspergen GR (2010) Influence of tidal range on the stability of coastal
- 824 marshland. *Geophysical Research Letters* 115(F2): F02009.

1	
2	
3	
4	
5	
6	
7	
0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
22	
3Z 22	
33 24	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55	
50	
ບ/ 50	
20	
59	
60	

825	Kirwan ML, Guntenspergen GR, D'Alpaos A, Morris JT, Mudd SM and Temmerman S (2010)
826	Limits on the adaptability of coastal marshes to rising sea level. Geophysical Research Letters
827	37(23): L23401.
828	Knaapen MAF, Holzhauer H, Hulscher SJMH, Baptist MJ, Vries de MB and Ledden van M (2003)
829	On the modelling of biological effects on morphology in estuaries and seas. In: Sanches-Arcilla
830	A and Batemen A (eds) Proceedings of the RCEM Symposium 2003 2003: 3rd Symposium on
831	River, Coastal and Estuarine Morphodynamics (RCEM) Barcelona. Barcelona, Spain: IHAR
832	Secretariat, pp.773-783.
833	Kolker AS, Goodbred Jr SL, Hameed S and Cochran JK (2009) High-resolution records of the
834	response of coastal wetland systems to long-term and short-term sea-level variability.
835	Estuarine, Coastal and Shelf Science 84(4): 493-508.
836	Kragtwijk NG, Zitman TJ, Stive MJF and Wang ZB (2004) Morphological response of tidal basins
837	to human interventions. Coastal Engineering 51(3): 207-221.
838	Kranck K (1973) Flocculation of Suspended Sediment in the Sea. <i>Nature</i> 246(5432): 348-350.
839	Krone R (1962) Flume studies of the transport of sediment in estuarial shoaling processes; final
840	report. Berkeley: University of California.
841	Krone R (1987) A method for simulating historic marsh elevations. In: Kraus NC (ed) <i>Coastal</i>
842	Sediments (1987). New Orleans, Lousiana: Americal Society of Cvil Engineers, pp.316-323.
843	Lanuru M (2004) The spatial and temporal patterns of erodibility of an intertidal flat in the East
844	Frisian Wadden Sea, Germany. PhD Thesis, University of Kiel.

845	Lanuru M, Riethmüller R, van Bernem C and Heymann K (2007) The effect of bedforms (crest
846	and trough systems) on sediment erodibility on a back-barrier tidal flat of the East Frisian
847	Wadden Sea, Germany. Estuarine, Coastal and Shelf Science 72(4): 603-614.
848	Leendertse PC, Roozen AJM and Rozema J (1997) Long-term changes (1953–1990) in the salt
849	marsh vegetation at the Boschplaat on Terschelling in relation to sedimentation and flooding.
850	Plant Ecology 132(1): 49-58.
851	Le Hir, P., Roberts, W., Cazaillet, O., Christie, M., Bassoullet, P. and Bacher, C. 2000:
852	Characterization of intertidal flat hydrodynamics. Continental Shelf Research 20: 1433-1459.
853	Le Hir P, Monbet Y and Orvain F (2007) Sediment erodability in sediment transport modelling:
854	Can we account for biota effects? Continental Shelf Research 27(8): 1116-1142.
855	Leonard LA and Luther ME (1995) Flow hydrodynamics in tidal marsh canopies. Limnology and
856	Oceanography 40(8): 1474-1484.
857	Leonard LA and Croft AL (2006) The effect of standing biomass on flow velocity and turbulence
858	in Spartina alterniflora canopies. <i>Estuarine, Coastal and Shelf Science</i> 69(3–4): 325-336.
859	Lettmann K, Wolff J-O and Badewien T (2009) Modeling the impact of wind and waves on
860	suspended particulate matter fluxes in the East Frisian Wadden Sea (southern North Sea).
861	Ocean Dynamics 59(2): 239-262.
862	Mai S and Bartholomä A (2000) The missing mud flats of the Wadden Sea: a reconstruction of
863	sediments and accommodation space lost in the wake of land reclamation. In: Flemming BW,
864	Delafontaine MT and Liebezeit G (eds) Muddy Coast Dynamics and Resource Management.
865	Whilhelmshaven, Germany: Elsevier, pp.257-272.

3
4
5
6
7
1
8
9
10
11
12
13
14
15
16
17
17
18
19
20
21
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
36
37
38
30
40
40
41
42
43
44
45
46
47
48
49
50
50
51
ວ <u>∠</u>
53
54
55
56
57
58
59
60

866 Manning AJ (2004) The Observed Effects of Turbulence on Estuarine Flocculation. Journal of

- 867 Coastal Research: 90-104.
- 868 Manning AJ and Dyer KR (2007) Mass settling flux of fine sediments in Northern European
- 869 estuaries: Measurements and predictions. *Marine Geology* 245(1-4): 107-122.
- 870 Manning A, Baugh J, Spearman J and Whitehouse RS (2010) Flocculation settling characteristics
- 871 of mud: sand mixtures. *Ocean Dynamics* 60(2): 237-253.
- 872 Mantovanelli A (2005) A new approach for measuring in situ the concentration and settling
- 873 *velocity of suspended cohesive sediment*. James Cook University.
- 874 Marani M, D'Alpaos A, Lanzoni S, Carniello L and Rinaldo A (2010) The importance of being
- 875 coupled: Stable states and catastrophic shifts in tidal biomorphodynamics. Journal of
- 876 *Geophysical Research-Earth Surface* 115(F4): F04004.
- 877 Marani M, Da Lio C and D'Alpaos A (2013) Vegetation engineers marsh morphology through
- 878 multiple competing stable states. *Proceedings of the National Academy of Sciences*.
- 879 Mariotti G and Fagherazzi S (2010) A numerical model for the coupled long-term evolution of
- salt marshes and tidal flats. *Journal of Geophysical Research-Earth Surface* 115(F1): F01004.
- 881 Mariotti G and Fagherazzi S (2013) Critical width of tidal flats triggers marsh collapse in the
- absence of sea-level rise. Proceedings of the National Academy of Sciences 110(14): 5353-
- 883 5356.
- 884 McFadden L, Spencer T and Nicholls RJ (2007) Broad-scale modelling of coastal wetlands: what
- 885 is required? *Hydrobiologia* 577: 5-15.

886	Meehl GA, Stocker TF, Collins WD	, Friedlingstein P	, Gaye AT, Gregory JN	I, Kitoh A, Knutti R,
-----	----------------------------------	--------------------	-----------------------	-----------------------

- 887 Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ and Zhao Z-C (2007) Global Climate
- 888 Projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M and
- 889 Miller HL (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working
- 890 Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.
- 891 Cambridge, UK and New York, USA: Cambridge University Press.
- 892 Miller MC, McCave IN and Komar PD (1977) Threshold of sediment motion under
- 893 unidirectional currents. *Sedimentology* 24(4): 507-527.
- 894 Mitchener H and Torfs H (1996) Erosion of mud/sand mixtures. *Coastal Engineering* 29(1-2): 1-
 - 895 25.
- 896 Möller I, Spencer T, French JR, Leggett DJ and Dixon M (1999) Wave Transformation Over Salt
- 897 Marshes: A Field and Numerical Modelling Study from North Norfolk, England. Estuarine,
- *Coastal and Shelf Science* 49(3): 411-426.
- 899 Möller I (2006) Quantifying saltmarsh vegetation and its effect on wave height dissipation:
- 900 Results from a UK East coast saltmarsh. *Estuarine, Coastal and Shelf Science* 69(3-4): 337-351.
- 901 Morris JT, Sundareshwar PV, Nietch CT, Kjerfve B and Cahoon DR (2002) Responses of coastal
- 902 wetlands to rising sea level. *Ecology* 83(10): 2869-2877.
- 903 Mudd SM, Fagherazzi S, Morris JT and Furbish DJ (2004) Flow, sedimentation, and biomass
- 904 production on a vegetated salt marsh in South Carolina: Toward a predictive model of marsh
- 905 morphologic and ecologic evolution. In: Fagherazzi S, Marani M and Blum LK (eds) The
- *Ecogeomorphology of Tidal Marshes.* Washington, D.C.: AGU, pp.165–188.

59 60

2		
3		
4		
5		
6		
7		
8	007	Mudd CM, D'Almans A and Marrie IT (2010) How does upgate tion affect addimentation on tidal
9	907	Mudd SM, D Alpaos A and Morris JT (2010) How does vegetation affect sedimentation on tidal
10		
11	908	marshes? Investigating particle capture and hydrodynamic controls on biologically mediated
12		
13	909	sedimentation. Journal of Geophysical Research-Earth Surface 115(F3): F03029.
14		
15	910	Nenf HM (1999) Drag turbulence and diffusion in flow through emergent vegetation Water
16	510	Nepi film (1999) Drag, turbulence, and unrasion in now through emergent vegetation. Water
17	014	
18	911	Resources Research 35(2): 479-489.
10		
19	912	Neumeier URS and Amos CL (2006) The influence of vegetation on turbulence and flow
20		
21	913	velocities in European salt-marshes. Sedimentology 53(2): 259-277.
22	010	
23	014	Nichalle DL Llogramone ENL and Marchand N/ (1000) Increasing flood risk and watland losses
24	914	Nicholis RJ, Hoozemans Fivil and Marchand M (1999) increasing flood risk and wetland losses
25		
26	915	due to global sea-level rise: regional and global analyses. Global Environmental Change
27		
28	916	9(Supplement 1): S69-S87.
29		
30	017	Nightinghous P. Hopsolor V and Janiesch P (2008) Die Elorg und Egung der Ostfriesischen Inseln:
31	917	
32		
33	918	Artenverzeichnis und Auswertungen zur Biodiversität; Nationalpark Wattenmeer.
34		
34 25	919	Nationalparkverwaltung "Niedersächsisches Wattenmeer".
30		
30	920	Nolte S. Konnenaal FC. Esselink P. Diikema KS. Schuerch M. Groot AV. Bakker IP and
37	520	Note 5, Roppendar 26, 255enner , Bijkema Ro, Senderen W, Broot W, Bakker Sr and
38	0.24	
39	921	Temmerman S (2013) Measuring sedimentation in tidal marsnes: a review on methods and
40		
41	922	their applicability in biogeomorphological studies. Journal of Coastal Conservation: Epub ahead
42		
43	923	of print January 2013. DOI: 10.1007/s11852-013-0238-3.
44		
45	021	Olff H. Leeuw ID. Bakker IP. Platerink RL and van Wiinen HL (1997) Vegetation Succession and
46	524	On The Leedword, Dakker SF, Flaterink to and van wijnen Tis (1997) vegetation Succession and
47		
48	925	Herbivory in a Salt Marsh: Changes induced by Sea Level Rise and Silt Deposition Along an
49		
50	926	Elevational Gradient. Journal of Ecology 85(6): 799-814.
51		
52		
53		
54		
55		
55		
50		
5/ 50		
58		

927 Orson R, Panageotou W and Leatherman SP (1985) Response of Tidal Salt Marshes of the U.S.

- 928 Atlantic and Gulf Coasts to Rising Sea Levels. *Journal of Coastal Research* 1(1): 29-37.
- 929 Panagiotopoulos I, Voulgaris G and Collins MB (1997) The influence of clay on the threshold of
- 930 movement of fine sandy beds. *Coastal Engineering* 32(1): 19-43.
- 931 Paterson DM (1989) Short-term changes in the erodibility of intertidal cohesive sediments
- 932 related to the migratory behavior of epipelic diatoms. *Limnology and Oceanography* 34(1):
- 933 223-234.
- 934 Pedersen JBT and Bartholdy J (2006) Budgets for fine-grained sediment in the Danish Wadden
- 935 Sea. Marine Geology 235(1-4): 101-117.
- 936 Pejrup M, Larsen M and Edelvang K (1997) A fine-grained sediment budget for the Sylt-Rømø
- 937 tidal basin. *Helgoland Marine Research* 51(3): 253-268.
- 938 Pethick JS (1981) Long-term accretion rates on tidal salt marshes. *Journal of Sedimentary*
- *Research* 51(2): 571-577.
- 940 Postma H (1961) Transport and accumulation of suspended matter in the Dutch Wadden Sea.
- 941 Netherlands Journal of Sea Research 1(1-2): 148-190.
- 942 Rahbani M (2011) Numerical modelling of the coastal processes in Dithmarschen Bight
- *incorporating field data*. PhD Thesis, Christian-Albrechts University of Kiel.
- 944 Randerson PF (1979) A simulation model of salt-marsh development and plant ecology.
- 945 Estuarine and coastal land reclamation and water storage: 48-67.
- 946 Redfield AC (1972) Development of a New England Salt Marsh. *Ecological Monographs* 42(2):
 - 947 201-237.

2	
3	
4	
5	
6	
7	
8	
ă	
10	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
20	
20	
27	
28	
29	
30	
31	
32	
33	
24	
34	
35	
36	
37	
38	
39	
40	
11	
40	
4Z	
43	
44	
45	
46	
47	
48	
<u>4</u> 0	
-3 50	
50	
51	
52	
53	
54	
55	
56	
57	
50	
00	
59	

60

948 Reed DJ (1988) Sediment dynamics and deposition in a retreating coastal salt marsh. Estuarine,

949 Coastal and Shelf Science 26(1): 67-79.

- 950 Reed DJ (1995) The response of coastal marshes to sea-level rise: Survival or submergence?
- 951 *Earth Surface Processes and Landforms* 20(1): 39-48.
- 952 Reise K (2002) Sediment mediated species interactions in coastal waters. Journal of Sea
- 953 *Research* 48(2): 127-141.
- 954 Reise K (2003) More Sand to the Shorelines of the Wadden Sea Harmonizing Coastal Defense
- 955 with Habitat Dynamics. In: Wefer G, Lamy F, Mantoura F and Reise K (eds) Marine Science
- 956 *Frontiers for Europe*. Berlin Heidelberg: Springer, pp.203-216.
- 957 Reise K (2005) Coast of change: habitat loss and transformations in the Wadden Sea.
- 958 Helgoland Marine Research 59(1): 9-21.
- 959 Reise K, Baptist M, Burbridge P, Dankers N, Fischer L, Flemming B, Oost AP and Smit C (2010)
- 960 The Wadden Sea A Universally Outstanding Tidal Wetland. Wadden Sea Ecosystem No. 29
- 961 Wilhelmshaven, Germany: Common Wadden Sea Secretariat.
- 962 Ridderinkhof H (1997) The Effect of Tidal Asymmetries on the Net Transport of Sediments in
- 963 the Ems Dollard Estuary. *Journal of Coastal Research*: 41-48.
- 964 Rubey WW (1933) Settling velocity of gravel, sand, and silt particles. American Journal of
- 965 *Science* Series 5 Vol. 25(148): 325-338.
- 966 Sanford LP and Maa JPY (2001) A unified erosion formulation for fine sediments. Marine
- 967 *Geology* 179(1): 9-23.

968	Santamarina Cuneo P and Flemming BW (2000) Quantifying concentration and flux of
969	suspended particulate matter through a tidal inlet of the East Frisian Wadden sea by acoustic
970	doppler current profiling. In: Flemming BW, Delafontaine MT and Liebezeit G (eds) Muddy
971	Coast Dynamics and Resource Management. Wilhelmshaven, Germany: Elsevier, pp.39-52.
972	Schröder HK, Kiehl K and Stock M (2002) Directional and non-directional vegetation changes in
973	a temperate salt marsh in relation to biotic and abiotic factors. Applied Vegetation Science
974	5(1): 33-44.
975	Schuerch M, Rapaglia J, Liebetrau V, Vafeidis A and Reise K (2012) Salt Marsh Accretion and
976	Storm Tide Variation: an Example from a Barrier Island in the North Sea. Estuaries and Coasts
977	35(2): 486-500.
978	Schuerch M, Vafeidis A, Slawig T and Temmerman S (2013) Modeling the influence of changing
979	storm patterns on the ability of a salt marsh to keep pace with sea level rise. Journal of
980	Geophysical Research: Earth Surface 118(1): 84-96.
981	Shi Z, Pethick JS, Burd F and Murphy B (1996) Velocity profiles in a salt marsh canopy. Geo-
982	Marine Letters 16(4): 319-323.
983	Singh Chauhan PP (2009) Autocyclic erosion in tidal marshes. <i>Geomorphology</i> 110(3-4): 45-57.
984	Soulsby RL and Whitehouse RJS (1997) Threshold of Sediment Motion in Coastal Environments.
985	Pacific Coasts and Ports '97: The 13th Australasian Coastal and Ocean Engineering Conference
986	and the 6th Australasian Port and Harbour Conference. Christchurch, New Zealand: Centre for
987	Advanced Engineering, University of Canterbury, 145-150.

2
3
4
5
6
7
8
9
10
11
10
12
13
14
15
16
17
18
19
20
20
21
22
23
24
25
26
27
28
29
20
24
31
32
33
34
35
36
37
38
39
10
40 11
41
42
43
44
45
46
47
48
49
50
51
52
52
55
54
55
56
57
58
59
60

988 Stal LJ (2010) Microphytobenthos as a biogeomorphological force in intertidal sediment

- 989 stabilization. *Ecological Engineering* 36(2): 236-245.
- 990 Stock M (1998) Salzwiesen im schleswig-holsteinischen Wattenmeer: Langfristige
- 991 Nutzungsänderungen. In: Landesamt für den Nationalpark Schleswig-Holsteinischen
- 992 Wattenmeer (ed) *Wattenmeermonitoring 1998.* Tönning, Germany, pp.8-10.
- 993 Stock M (2011) Patterns in long-term surface elevation changes across a temperate salt marsh
- 994 platform in relation to SLR. *Coastline Reports* 17: 33-48.
- 995 Stumpf RP (1983) The process of sedimentation on the surface of a salt marsh. *Estuarine*,
- 996 *Coastal and Shelf Science* 17(5): 495-508.
 - 997 Sullivan MJ and Currin CA (2002) Community Structure and Functional Dynamics of Benthic
- 998 Microalgae in Salt Marshes. In: Weinstein MP and Kreeger DA (eds) Concepts and Controversies
 - 999 *in Tidal Marsh Ecology*. Dordrecht: Kluwer Academic Publishers, pp.81-106.
- 1000 Temmerman S, Govers G, Wartel S and Meire P (2003a) Spatial and temporal factors
- 1001 controlling short-term sedimentation in a salt and freshwater tidal marsh, Scheldt estuary,
- 1002 Belgium, SW Netherlands. *Earth Surface Processes and Landforms* 28(7): 739-755.
- 1003 Temmerman S, Govers G, Meire P and Wartel S (2003b) Modelling long-term tidal marsh
 - 1004 growth under changing tidal conditions and suspended sediment concentrations, Scheldt
 - 1005 estuary, Belgium. *Marine Geology* 193(1-2): 151-169.
- 1006 Temmerman S, Govers G, Wartel S and Meire P (2004a) Modelling estuarine variations in tidal
- 1007 marsh sedimentation: response to changing sea level and suspended sediment concentrations.
- 1008 *Marine Geology* 212(1-4): 1-19.

1009 Temmerman S, Govers G, Meire P and Wartel S (2004b) Simulating the long-term development

- 1010 of levee-basin topography on tidal marshes. *Geomorphology* 63(1-2): 39-55.
- 1011 Temmerman S, Bouma TJ, Govers G, Wang ZB, De Vries MB and Herman PMJ (2005) Impact of
- 1012 vegetation on flow routing and sedimentation patterns: Three-dimensional modeling for a tidal
- 1013 marsh. Journal of Geophysical Research: Earth Surface 110(F4): F04019.
- 1014 Tonelli M, Fagherazzi S and Petti M (2010) Modeling wave impact on salt marsh boundaries.
- 1015 Journal of Geophysical Research: Oceans 115(C9): C09028.
- 1016 van Beusekom JEE, Buschbaum C and Reise K (2012) Wadden Sea tidal basins and the
- 1017 mediating role of the North Sea in ecological processes: scaling up of management? Ocean &
- 1018 Coastal Management 68: 69-78.
- 1019 van de Koppel J, van der Wal D, Bakker JP and Herman PMJ (2005) Self Organization and
- 1020 Vegetation Collapse in Salt Marsh Ecosystems. *The American Naturalist* 165(1): E1-E12.
- 1021 van de Kreeke J and Hibma A (2005) Observations on silt and sand transport in the throat
- 1022 section of the Frisian Inlet. *Coastal Engineering* 52(2): 159-175.
- 1023 van der Maarel E and van der Maarel-Versluys M (1996) Distribution and conservation status
- 1024 of littoral vascular plant species along the European coasts. Journal of Coastal Conservation
 - 1025 2(1): 73-92.

- 1026 van der Spek AJF (1997) Tidal asymmetry and long-term evolution of Holocene tidal basins in
- 1027 The Netherlands: simulation of palaeo-tides in the Schelde estuary. *Marine Geology* 141(1-4):

1028 71-90.

2		
3		
4		
5		
6		
7		
8	1020	van Goor MA, Zitman TL, Wang ZB and Stive MJE (2002) Impact of soa level rise on the
9	1029	vali door MA, Zitilian 13, Walig ZB and Stive MJF (2005) inipact of sea-level rise on the
10	4000	
11	1030	morphological equilibrium state of tidal inlets. <i>Marine Geology</i> 202(3-4): 211-227.
12		
13	1031	van Leeuwen B (2008) Modeling mussel bed influence on fine sediment dynamics on a Wadden
14		
15	1032	Sea intertidal flat. Master Thesis, University of Twente.
16		
17	1033	van Leussen W (1988) Aggregation of Particles, Settling Velocity of Mud Flocs A Review. In:
18		
19	1034	Dronkers J and van Leussen W (eds) Physical Processes in Estuaries. Berlin Heidelberg: Springer
20		
21	1035	nn 347-403
22	1000	
23	1036	van Leussen W (1994) Estuaring Macroflocs and their Role in Fine-Grained Sediment Transport
24	1050	van Ecussen w (1994) Estuarme maerojoes und their Note in time Gramed Scalment transport.
25	1027	DhD Theorie University of Utresht
20	1057	PhD mesis, oniversity of otrecht.
27	1020	
20	1038	van Rijn LC (1993) Principies of sediment transport in rivers, estudries and coastal seas. Aqua
29		
30	1039	publications Amsterdam.
22		
33	1040	van Straaten L and Kuenen PH (1957) Accumulation of Fine Grained Sediments in the Dutch
34		
35	1041	Waddensea.
36		
37	1042	van Straaten LMJU and Kuenen PH (1958) Tidal action as a cause of clay accumulation. Journal
38		
39	1043	of Sedimentary Research 28(4): 406-413.
40		
41	1044	van Wijnen HJ and Bakker JP (2001) Long-term Surface Elevation Change in Salt Marshes: a
42	-	
43	1045	Prediction of Marsh Response to Future Sea-Level Rise Estuarine Coastal and Shelf Science
44	20.0	
45	1046	52(3): 381-390
46	1040	52(5). 561-550.
47	1047	Vermeer M and Pahmeterf S (2000) Clobal cas level linked to global temperature. Proceedings
48	1047	vermeer wi and Ranniston's (2009) Global sea level linked to global temperature. Proceedings
49	1010	- (1 h - N - 1 '
50	1048	of the National Academy of Sciences 106(51): 21527-21532.
51		
52		
53		
54		
55		
56		
5/		
50 50		
39		

1049	Verwey J (1952) On the ecology of distribution of cockle and mussel in the Dutch Wadden Sea,
1050	their role in sedimentation and the source of their food supply. Archives Neerlandaises de
1051	Zoologie 10: 171-239.
1052	Volkenborn N, Hedtkamp SIC, van Beusekom JEE and Reise K (2007) Effects of bioturbation and
1053	bioirrigation by lugworms (Arenicola marina) on physical and chemical sediment properties
1054	and implications for intertidal habitat succession. Estuarine, Coastal and Shelf Science 74(1-2):
1055	331-343.
1056	Volkenborn N, Robertson D and Reise K (2009) Sediment destabilizing and stabilizing bio-
1057	engineers on tidal flats: cascading effects of experimental exclusion. Helgoland Marine
1058	Research 63(1): 27-35.
1059	Vos PC and van Kesteren WP (2000) The long-term evolution of intertidal mudflats in the
1060	northern Netherlands during the Holocene; natural and anthropogenic processes. Continental
1061	Shelf Research 20(12-13): 1687-1710.
1062	Wahl T, Jensen J and Frank T (2010) On analysing sea level rise in the German Bight since 1844.
1063	Natural Hazards and Earth System Sciences 10(2): 171-179.
1064	Walton T and Adams W (1976) Capacity of inlet outer bars to store sand. 15th Conference on
1065	Coastal Engineering. Honolulu, Hawaii: American Society of Civil Engineers, 1919-1937.
1066	Wang ZB, Louters T and de Vriend HJ (1995) Morphodynamic modelling for a tidal inlet in the
1067	Wadden Sea. Marine Geology 126(1-4): 289-300.

2	
3	
4	
4	
5	
6	
7	
1	
8	
9	
10	
44	
11	
12	
13	
1/	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
22	
23	
24	
25	
20	
26	
27	
28	
20	
29	
30	
31	
32	
02	
33	
34	
35	
36	
30	
37	
38	
30	
40	
40	
41	
42	
12	
+3	
44	
45	
46	
17	
41	
48	
49	
50	
50 E4	
21	
52	
53	
51	
54	
55	
56	
57	
51	
20	
59	
60	

1068	Wang ZB, Hoekstra P, Burchard H, Ridderinkhot H, De Swart HF and Stive MJF (2012)
		(===)

- 1069 Morphodynamics of the Wadden Sea and its barrier island system. Ocean & Coastal
- 1070 Management 68: 39-57.
- 1071 Ward LG, Michael Kemp W and Boynton WR (1984) The influence of waves and seagrass
- 1072 communities on suspended particulates in an estuarine embayment. *Marine Geology* 59(1-4):
- 1073 85-103.
- 1074 Warren RS and Niering WA (1993) Vegetation Change on a Northeast Tidal Marsh: Interaction
- 1075 of Sea-Level Rise and Marsh Accretion. *Ecology* 74(1): 96-103.
- 1076 Weisse R and Plüβ A (2006) Storm-related sea level variations along the North Sea coast as
- 1077 simulated by a high-resolution model 1958–2002. *Ocean Dynamics* 56(1): 16-25.
- 1078 Weisse R, von Storch H, Niemeyer HD and Knaack H (2012) Changing North Sea storm surge
 - 1079 climate: An increasing hazard? *Ocean & Coastal Management* 68: 58-68.
- 1080 Widdows J, Blauw A, Heip CHR, Herman PMJ, Lucas CH, Middelburg JJ, Schmidt S, Brinsley MD,
- 1081 Twisk F and Verbeek H (2004) Role of physical and biological processes in sediment dynamics
- 1082 of a tidal flat in Westerschelde Estuary, SW Netherlands. *Marine Ecology Progress Series* 274:
 - 1083 41-56.
 - 1084 Winterwerp JC (1998) A simple model for turbulence induced flocculation of cohesive
 - 1085 sediment. *Journal of Hydraulic Research* 36(3): 309-326.
 - 1086 Winterwerp JC (2002) On the flocculation and settling velocity of estuarine mud. Continental
 - 1087 Shelf Research 22(9): 1339-1360.

1088 Winterwerp JC, Manning AJ, Martens C, de Mulder T and Vanlede J (2006) A heuristic formula

1089 for turbulence-induced flocculation of cohesive sediment. Estuarine, Coastal and Shelf Science

1090 68(1-2): 195-207.

- 1091 Wolff WJ, Bakker JP, Laursen K and Reise K (2010) The Wadden Sea Quality Status Report -
- 1092 Synthesis Report 2010. In: Marencic H and de Vlas J (eds) The Wadden Sea 2010. Wadden Sea
- *Ecosystem No. 29.* Wilhelmshaven, Germany: Common Wadden Sea Secretariat, Trilateral
- 1094 Monitoring and Assessment Group.
- 1095 Woth K, Weisse R and von Storch H (2006) Climate change and North Sea storm surge
- 1096 extremes: an ensemble study of storm surge extremes expected in a changed climate
- 1097 projected by four different regional climate models. *Ocean Dynamics* 56(1): 3-15.
- 1098 Yapp RH, Johns D and Jones OT (1917) The Salt Marshes of the Dovey Estuary. Journal of

Ecology 5(2): 65-103.

Figure 1: Location of the Wadden Sea along the south-eastern coast of the North Sea (left). The Wadden Sea area consists of the subtidal areas (white), the tidal flats (grey) and the barrier islands and mainland coasts (black) (right). 160x70mm (300 x 300 DPI)

Figure 2: Vegetation effects leading to enhanced allochthonous marsh accretion. Source: Fagherazzi et al., 2012. 120x57mm (300 x 300 DPI)

Figure 3: Threshold relative SLR rates for the survival of salt marshes as a function of tidal range (TR) and local sediment availability (suspended sediment concentration), modelled with five different salt marsh models. Dashed lines indicate three different tidal regimes (1 m, 3 m, and 5 m). Source: Modified after Kirwan et al., 2010.

83x73mm (300 x 300 DPI)

Figure 5: Floc settling velocity (w_s) as a function of turbulent shear stress and suspended sediment concentrations for macro-flocs (a) and micro-flocs (b) assessed for several European estuaries. Source: Manning and Dyer, 2007. 160x174mm (300 x 300 DPI)

Figure 6 (modified after Kragtwijk et al., 2004): Morphological elements of the sand-sharing system for one tidal basin, as schematized by the "Aggregate scale morphodynamic model of integrated coastal systems" (ASMITA) model. The fringing salt marshes are added as an additional morphological element that act as a sediment sink for the tidal basin. Source: Modified after Kragtwijk et al., 2004.

160x129mm (300 x 300 DPI)

1) Sediment influx through tidal channel during storm events (coarser sediment)

- 2) Sediment influx through tidal channel during calm periods (finer sediment)
- 3) Sediment resuspension on tidal flats affected by physical (e.g. grain size) and biological (benthic flora and fauna) sediment properties.
- 4) Sediment resuspension at marsh edge (controlled by physical and biological parameters as well as the slope and height of the scarp)
- 5) Sediment exchange between tidal channel, tidal flat, and salt marsh
- 6) Transport of sediments resuspended from the tidal flats and the marsh edge towards the salt marsh
- 7) Direct sediment transport from tidal inlet to salt marsh during storm events
- 8) Marsh accretion in seaward part of the marsh (more and coarser sediment)
- 9) Marsh accretion in landward part of the marsh (less and finer sediment)

Figure 7: Conceptual model of sediment dynamics between the different morphological units in the Wadden Sea (tidal channel, tidal flats, salt marshes; subtidal flats have been omitted because of gap in knowledge). 160x134mm (300 x 300 DPI)