5 research outputs found

    Impact of the COVID-19 Global Pandemic on the Otolaryngology Fellowship Application Process

    Get PDF
    On March 11, 2020, the World Health Organization declared coronavirus disease 2019 a global pandemic. In addition to massive social disruption, this pandemic affected the traditional fellowship interview season for otolaryngology subspecialties, including head and neck surgical oncology, facial plastic and reconstructive surgery, laryngology, rhinology, neurotology, and pediatric otolaryngology. The impact on the fellowship interview process, from the standpoint of the institution and the applicant, necessitated the use of alternative interview processes. This change may alter the future of how interviews and the match proceed for years to come, with nontraditional methods of interviewing becoming a mainstay. While the impact this pandemic has on the fellowship match process is not yet fully realized, this commentary aims to discuss the challenges faced on both sides of the equation and to offer solutions during these unprecedented times

    Reverse-Surge Planning During the COVID-19 Pandemic: A Cautionary Ramp-up for the Otolaryngologist

    Get PDF
    As the coronavirus disease 2019 (COVID-19) pandemic continues to evolve through the United States and other countries, differing rates of progression and decline are occurring based on varied population densities. While some health systems are reaching a steady state of new patient cases, others are seeing a leveling off or decline, allowing for restoration of normal practices. This “reverse-surge” planning and implementation process is a colossal undertaking for health systems trying to reacquire patient access and financial stability while preserving necessary resources and maintaining precautions for another potential surge. For the otolaryngologist, reverse-surge planning involves additional workflow adjustments in the outpatient and operating room settings given the abundance of COVID-19 virus in the upper aerodigestive tract. As the reverse-surge best practices are still under development, open communication between otolaryngology colleagues and health system leadership is paramount to optimize efficiency and maintain an adequate measure of safety for patients and our health care teams

    Aerosol and droplet generation from orbital repair: Surgical risk in the pandemic era

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.Introduction The highly contagious COVID-19 has resulted in millions of deaths worldwide. Physicians performing orbital procedures may be at increased risk of occupational exposure to the virus due to exposure to secretions. The goal of this study is to measure the droplet and aerosol production during repair of the inferior orbital rim and trial a smoke-evacuating electrocautery handpiece as a mitigation device. Material and methods The inferior rim of 6 cadaveric orbits was approached transconjunctivally using either standard or smoke-evacuator electrocautery and plated using a high-speed drill. Following fluorescein inoculation, droplet generation was measured by counting under ultraviolet-A (UV-A) light against a blue background. Aerosol generation from 0.300–10.000 μm was measured using an optical particle sizer. Droplet and aerosol generation was compared against retraction of the orbital soft tissue as a negative control. Results No droplets were observed following the orbital approach using electrocautery. Visible droplets were observed after plating with a high-speed drill for 3 of 6 orbits. Total aerosol generation was significantly higher than negative control following the use of standard electrocautery. Use of smoke-evacuator electrocautery was associated with significantly lower aerosol generation in 2 of 3 size groups and in total. There was no significant increase in total aerosols associated with high-speed drilling. Discussion and conclusions Droplet generation for orbital repair was present only following plating with high-speed drill. Aerosol generation during standard electrocautery was significantly reduced using a smoke-evacuating electrocautery handpiece. Aerosols were not significantly increased by high-speed drilling
    corecore