257 research outputs found

    Exploration of Conformity to Masculine Norms among Male Engineering Undergraduates

    Get PDF
    This study quantitatively examines the level to which college men studying engineering conform to masculine norms and the relationship between their conformity to masculine norms and sense of belonging in their major. Study participants were undergraduate, male-identifying students at a large, public research university in the Midwest. Masculine norm conformity was measured through the Conformity to Masculine Norms Inventory-46 (CMNI-46) and analyzed based on scores from each of the inventory’s nine subscales that align with nine popular masculine norms identified in Western culture. A comparison between engineering males’ masculine norm conformity scores and conformity scores from males enrolled in female-dominated majors at the same institution was also conducted.Results of the study indicate that engineering males in the study’s sample generally do not endorse the masculine norms measured by the CMNI-46. While the engineering males did indicate greater levels of conformity to the masculine norms compared to males in female-dominated majors, the differences were either statistically insignificant or very small. Masculine norm conformity scores were also found to predict only a small amount of the variance in scores measuring sense of belonging in major, indicating other variables not accounted for in the study are responsible for the majority of variance in belonging scores. This sample’s lack of endorsement of the masculine norms identified in the CMNI-46 align with other recent studies of similar populations and suggest that the norms measured by the instrument do not align with modern college males’ views of masculinity, suggesting that new approaches to masculinity research should be utilized for this population. Similarly, these findings suggest campus professionals should highlight positive expressions of masculinity when engaging in conversations about masculinity with men on campus

    AMACO is a component of the basement membrane-associated fraser complex

    Get PDF
    Fraser syndrome (FS) is a phenotypically variable, autosomal recessive disorder characterized by cryptophthalmus, cutaneous syndactyly, and other malformations resulting from mutations in FRAS1, FREM2, and GRIP1. Transient embryonic epidermal blistering causes the characteristic defects of the disorder. Fras1, Frem1, and Frem2 form the extracellular Fraser complex, which is believed to stabilize the basement membrane. However, several cases of FS could not be attributed to mutations in FRAS1, FREM2, or GRIP1, and FS displays high clinical variability, suggesting that there is an additional genetic, possibly modifying contribution to this disorder. An extracellular matrix protein containing VWA-like domains related to those in matrilins and collagens (AMACO), encoded by the VWA2 gene, has a very similar tissue distribution to the Fraser complex proteins in both mouse and zebrafish. Here, we show that AMACO deposition is lost in Fras1-deficient zebrafish and mice and that Fras1 and AMACO interact directly via their chondroitin sulfate proteoglycan (CSPG) and P2 domains. Knockdown of vwa2, which alone causes no phenotype, enhances the phenotype of hypomorphic Fras1 mutant zebrafish. Together, our data suggest that AMACO represents a member of the Fraser complex

    Genetic susceptibility to burnout in a Swedish twin cohort

    Get PDF
    Most previous studies of burnout have focused on work environmental stressors, while familial factors so far mainly have been overlooked. The aim of the study was to estimate the relative importance of genetic influences on burnout (measured with Pines Burnout Measure) in a sample of monozygotic (MZ) and dizygotic (DZ) Swedish twins. The study sample consisted of 20,286 individuals, born 1959–1986 from the Swedish twin registry who participated in the cross-sectional study of twin adults: genes and environment. Probandwise concordance rates (the risk for one twin to be affected given that his/her twin partner is affected by burnout) and within pair correlations were calculated for MZ and DZ same—and opposite sexed twin pairs. Heritability coefficients i.e. the proportion of the total variance attributable to genetic factors were calculated using standard biometrical model fitting procedures. The results showed that genetic factors explained 33% of the individual differences in burnout symptoms in women and men. Environmental factors explained a substantial part of the variation as well and are thus important to address in rehabilitation and prevention efforts to combat burnout

    High resolution structural evidence suggests the Sarcoplasmic Reticulum forms microdomains with acidic stores (lysosomes) in the heart

    Get PDF
    Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) stimulates calcium release from acidic stores such as lysosomes and is a highly potent calcium-mobilising second messenger. NAADP plays an important role in calcium signalling in the heart under basal conditions and following β-adrenergic stress. Nevertheless, the spatial interaction of acidic stores with other parts of the calcium signalling apparatus in cardiac myocytes is unknown. We present evidence that lysosomes are intimately associated with the sarcoplasmic reticulum (SR) in ventricular myocytes; a median separation of 20 nm in 2D electron microscopy and 3.3 nm in 3D electron tomography indicates a genuine signalling microdomain between these organelles. Fourier analysis of immunolabelled lysosomes suggests a sarcomeric pattern (dominant wavelength 1.80 μm). Furthermore, we show that lysosomes form close associations with mitochondria (median separation 6.2 nm in 3D studies) which may provide a basis for the recently-discovered role of NAADP in reperfusion-induced cell death. The trigger hypothesis for NAADP action proposes that calcium release from acidic stores subsequently acts to enhance calcium release from the SR. This work provides structural evidence in cardiac myocytes to indicate the formation of microdomains between acidic and SR calcium stores, supporting emerging interpretations of NAADP physiology and pharmacology in heart

    Person-Specific Non-shared Environmental Influences in Intra-individual Variability : A Preliminary Case of Daily School Feelings in Monozygotic Twins

    Get PDF
    Most behavioural genetic studies focus on genetic and environmental influences on inter-individual phenotypic differences at the population level. The growing collection of intensive longitudinal data in social and behavioural science offers a unique opportunity to examine genetic and environmental influences on intra-individual phenotypic variability at the individual level. The current study introduces a novel idiographic approach and one novel method to investigate genetic and environmental influences on intra-individual variability by a simple empirical demonstration. Person-specific non-shared environmental influences on intra-individual variability of daily school feelings were estimated using time series data from twenty-one pairs of monozygotic twins (age = 10 years, 16 female pairs) over two consecutive weeks. Results showed substantial inter-individual heterogeneity in person-specific non-shared environmental influences. The current study represents a first step in investigating environmental influences on intra-individual variability with an idiographic approach, and provides implications for future behavioural genetic studies to examine developmental processes from a microscopic angle

    Bromodomain inhibition of the transcriptional coactivators CBP/EP300 as a therapeutic strategy to target the IRF4 network in multiple myeloma

    Get PDF
    Abstract Pharmacological inhibition of chromatin co-regulatory factors represents a clinically validated strategy to modulate oncogenic signaling through selective attenuation of gene expression. Here, we demonstrate that CBP/EP300 bromodomain inhibition preferentially abrogates the viability of multiple myeloma cell lines. Selective targeting of multiple myeloma cell lines through CBP/EP300 bromodomain inhibition is the result of direct transcriptional suppression of the lymphocyte-specific transcription factor IRF4, which is essential for the viability of myeloma cells, and the concomitant repression of the IRF4 target gene c-MYC. Ectopic expression of either IRF4 or MYC antagonizes the phenotypic and transcriptional effects of CBP/EP300 bromodomain inhibition, highlighting the IRF4/MYC axis as a key component of its mechanism of action. These findings suggest that CBP/EP300 bromodomain inhibition represents a viable therapeutic strategy for targeting multiple myeloma and other lymphoid malignancies dependent on the IRF4 network
    corecore